cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A026584 Irregular triangular array T read by rows: T(i,0) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = floor(i/2) for i >= 1; and for i >= 2 and j = 2..2i-2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) if i+j is odd, and T(i,j) = T(i-1,j-2) + T(i-1,j) if i+j is even.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 4, 1, 1, 1, 2, 5, 7, 8, 7, 5, 2, 1, 1, 2, 8, 9, 20, 14, 20, 9, 8, 2, 1, 1, 3, 9, 19, 28, 43, 40, 43, 28, 19, 9, 3, 1, 1, 3, 13, 22, 56, 62, 111, 86, 111, 62, 56, 22, 13, 3, 1, 1, 4, 14, 38, 69, 140, 167, 259, 222, 259, 167, 140, 69, 38, 14, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Row sums are in A026597. - Philippe Deléham, Oct 16 2006
T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i)-s(i-1)| <= 1 if s(i-1) odd, |s(i)-s(i-1)| = 1 if s(i-1) is even, for i = 1..n.

Examples

			First 5 rows:
  1
  1  0  1
  1  1  2  1  1
  1  1  4  2  4  1  1
  1  2  5  7  8  7  5  2  1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2]; t[n_, k_] := Floor[n/2] /; k == 2 n - 1; t[n_, k_] := t[n, k] = If[EvenQ[n + k], t[n - 1, k - 2] + t[n - 1, k], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u]   (* A026584 array *)
    v = Flatten[u] (* A026584 sequence *)
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 11 2021

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k) if ( (n+k) mod 2 ) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), where T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor(n/2).

Extensions

Updated by Clark Kimberling, Aug 29 2014

A026585 a(n) = T(n,n), T given by A026584. Also a(n) is the number of integer strings s(0), ..., s(n) counted by T, such that s(n)=0.

Original entry on oeis.org

1, 0, 2, 2, 8, 14, 40, 86, 222, 518, 1296, 3130, 7770, 19066, 47324, 117094, 291260, 724302, 1806220, 4507230, 11266718, 28188070, 70609316, 177023466, 444231564, 1115639586, 2803975860, 7052132546, 17748069294, 44693162266
Offset: 0

Views

Author

Keywords

Comments

The signed sequence 1,0,2,-2,8,-14,... is the inverse binomial transform of A026569. - Paul Barry, Sep 09 2004
Hankel transform of a(n) is 2^n. Hankel transform of a(n+1) is {0, -4, 0, 16, 0, -64, 0, 256, 0, ...} or -2^(n+1)*[x^n](x/(1+x^2)). Hankel transform of a(n+2) is 2^(n+1)*A109613(n+1). - Paul Barry, Mar 23 2011

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-j-1, n-2*j)*Binomial(2*j, j): j in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Dec 12 2021
    
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-x-4*x^2)], {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • Sage
    [sum(binomial(n-j-1, n-2*j)*binomial(2*j, j) for j in (0..(n//2))) for n in [0..40]] # G. C. Greubel, Dec 12 2021

Formula

a(n) = A026584(n, n).
G.f.: sqrt((1-x)/(1-x-4*x^2)). - Ralf Stephan, Jan 08 2004
From Paul Barry, Jul 01 2009: (Start)
G.f.: 1/(1 -2*x^2/(1 -x -x^2/(1 -x^2/(1 -x -x^2/(1 -x^2/(1 -x -x^2/(1 - ... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*C(n-k,k)*A000984(k). (End)
From Paul Barry, Mar 23 2011: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(n-k-1,n-2*k)*A000984(k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k-1,n-2*k)*C(2*k,k). (End)
D-finite with recurrence n*a(n) +2*(-n+1)*a(n-1) +(-3*n+2)*a(n-2) +2*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ (sqrt(17)+1)^(n-1/2) / (17^(1/4) * sqrt(Pi*n) * 2^(n-3/2)). - Vaclav Kotesovec, Feb 12 2014

A015445 Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2).

Original entry on oeis.org

1, 1, 10, 19, 109, 280, 1261, 3781, 15130, 49159, 185329, 627760, 2295721, 7945561, 28607050, 100117099, 357580549, 1258634440, 4476859381, 15804569341, 56096303770, 198337427839, 703204161769, 2488241012320, 8817078468241, 31211247579121, 110564953793290
Offset: 0

Views

Author

Keywords

Comments

The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 10*a(n-2) equals the number of 10-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+9*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Maple
    m:=25; S:=series(1/(1-x-9*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 18 2020
  • Mathematica
    CoefficientList[Series[1/(1-x-9*x^2), {x,0,25}], x] (* or *) LinearRecurrence[{1,9}, {1,1}, 25] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    a(n)=([0,1; 9,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,1,-9) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = (((1+sqrt(37))/2)^(n+1) - ((1-sqrt(37))/2)^(n+1))/sqrt(37).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*9^k. - Paul Barry, Jul 20 2004
a(n) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*3^(n-k)/2. - Paul Barry, Aug 28 2005
a(n) = Sum_{k=0..n} A109466(n,k)*(-9)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = (-703*(1/2-sqrt(37)/2)^n + 199*sqrt(37)*(1/2-sqrt(37)/2)^n-333*(1/2+sqrt(37)/2)^n + 171*sqrt(37)*(1/2+sqrt(37)/2)^n)/(74*(5*sqrt(37)-14)). - Alexander R. Povolotsky, Oct 13 2010
a(n) = Sum_{k=1..n+1, k odd} C(n+1,k)*37^((k-1)/2)/2^n. - Vladimir Shevelev, Feb 05 2014
G.f.: 1/(1-x-9*x^2). - Philippe Deléham, Feb 19 2020
a(n) = J(n, 9/2), where J(n,x) are the Jacobsthal polynomials. - G. C. Greubel, Feb 18 2020
E.g.f.: exp(x/2)*(sqrt(37)*cosh(sqrt(37)*x/2) + sinh(sqrt(37)*x/2))/sqrt(37). - Stefano Spezia, Feb 19 2020

Extensions

Edited by N. J. A. Sloane, Oct 11 2010

A026599 a(n) = Sum_{j=0..2*i, i=0..n} A026584(i,j).

Original entry on oeis.org

1, 3, 9, 23, 61, 155, 401, 1023, 2629, 6723, 17241, 44135, 113101, 289643, 742049, 1900623, 4868821, 12471315, 31946601, 81831863, 209618269, 536945723, 1375418801, 3523201695, 9024876901, 23117683683, 59217191289, 151687926023
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 3^(n-1) else 2*Self(n-1) +3*Self(n-2) -4*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 15 2021
    
  • Mathematica
    LinearRecurrence[{2,3,-4}, {1,3,9}, 40] (* G. C. Greubel, Dec 15 2021 *)
  • Sage
    [( (1+x)/((1-x)*(1-x-4*x^2)) ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Dec 15 2021

Formula

G.f.: (1+x)/((1-x)*(1-x-4*x^2)). - Ralf Stephan, Feb 04 2004
From Klaus Purath, Feb 02 2021: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3).
a(n) = Sum_{j=0..n} A026597(j). (End)
a(n) = 2^n*(Fibonacci(n+2, 1/2) + Fibonacci(n+1, 1/2)) - 1/2. - G. C. Greubel, Dec 15 2021

A026587 a(n) = T(n, n-2), T given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=2.

Original entry on oeis.org

1, 1, 5, 9, 28, 62, 167, 399, 1024, 2518, 6359, 15819, 39759, 99427, 249699, 626203, 1573524, 3953446, 9943905, 25019005, 62994733, 158680545, 399936573, 1008438757, 2543992514, 6420413940, 16210331727, 40943722115, 103453402718
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    Table[T[n, n-2], {n, 2, 40}] (* G. C. Greubel, Dec 12 2021 *)
  • Sage
    @CachedFunction
    def T(n, k): # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(n, n-2) for n in (2..40)] # G. C. Greubel, Dec 12 2021

Formula

a(n) = A026584(n, n-2).
Conjecture: (n+2)*a(n) = (3*n+2)*a(n-1) +(3*n+2)*a(n-2) -(11*n-16)*a(n-3) -2*(n-3)*a(n-4) +4*(2*n-9)*a(n-5). - R. J. Mathar, Jun 23 2013

A026589 a(n) = T(n,n-4), T given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=4.

Original entry on oeis.org

1, 2, 9, 22, 69, 178, 497, 1294, 3452, 8964, 23430, 60556, 156663, 403214, 1037191, 2660978, 6821200, 17459732, 44657246, 114117628, 291449047, 743904326, 1897956899, 4840429962, 12340947855, 31455453822, 80158533099
Offset: 4

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    Table[T[n, n-4], {n, 4, 40}] (* G. C. Greubel, Dec 12 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(n, n-4) for n in (4..40)] # G. C. Greubel, Dec 12 2021

Formula

a(n) = A026584(n, n-4).
Conjecture: -(n+4)*(65*n-269)*a(n) +(-65*n^2+140*n+1933)*a(n-1) +(809*n^2-2431*n-4514)*a(n-2) +(-123*n^2+2496*n-205)*a(n-3) +2*(-726*n^2+3737*n-4395)*a(n-4) +8*(56*n-215)*(2*n-9)*a(n-5) = 0. - R. J. Mathar, Jun 23 2013

A026590 a(n) = T(2*n, n), where T is given by A026584.

Original entry on oeis.org

1, 1, 5, 19, 69, 341, 1203, 6336, 22593, 121483, 438533, 2381512, 8677763, 47419503, 173984792, 954961034, 3522101709, 19397198595, 71831252031, 396646918211, 1473610012405, 8154682794333, 30376120747792, 168394714422722, 628648474795879, 3490216221862041, 13053833414221023, 72566287730964469
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n]];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n, n) for n in (0..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(n, n).

Extensions

Terms a(19) onward from G. C. Greubel, Dec 13 2021

A026591 a(n) = T(2*n, n-1), where T is given by A026584.

Original entry on oeis.org

1, 2, 9, 38, 140, 701, 2534, 13294, 48369, 258430, 947694, 5114572, 18872399, 102539204, 380143356, 2075658454, 7723000261, 42330184638, 157951859953, 868376395790, 3247811317907, 17899895038348, 67075896452000, 370442993383238, 1390392820937920, 7692166179956366, 28910883325637649, 160184255555687056
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n-1]];
    Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k): # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(2*n, n-1).

Extensions

Terms a(19) onward from G. C. Greubel, Dec 13 2021

A026592 a(n) = T(2*n, n-2), where T is given by A026584.

Original entry on oeis.org

1, 3, 14, 65, 251, 1288, 4830, 25518, 95388, 510532, 1910821, 10309234, 38656462, 209766714, 787912030, 4294635438, 16155375825, 88371236851, 332859949946, 1826080683788, 6885797551334, 37867515477338, 142929375411104, 787637258527505, 2975423924172735, 16425495119248041, 62096233990615140, 343318987947145114
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n-2]];
    Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n, n-2) for n in (2..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(2*n, n-2).

Extensions

Terms a(19) onward added by G. C. Greubel, Dec 13 2021

A026593 a(n) = T(2*n-1, n-1), where T is given by A026584.

Original entry on oeis.org

1, 1, 8, 22, 121, 406, 2155, 7624, 40717, 147001, 792351, 2892044, 15703156, 57728737, 315180458, 1164727748, 6385672193, 23691834033, 130316812494, 485018155062, 2674846358141, 9980763478121, 55161813337474, 206262229900060, 1142020843590221, 4277853480389546, 23721423518350124, 88991782850212510
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n-1,n-1]];
    Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n-1, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(2*n-1, n-1).

Extensions

Terms a(19) onward added by G. C. Greubel, Dec 13 2021
Showing 1-10 of 17 results. Next