cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026615 Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = 2*n-1 for n >= 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2 and n >= 4.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 10, 7, 1, 1, 9, 17, 17, 9, 1, 1, 11, 26, 34, 26, 11, 1, 1, 13, 37, 60, 60, 37, 13, 1, 1, 15, 50, 97, 120, 97, 50, 15, 1, 1, 17, 65, 147, 217, 217, 147, 65, 17, 1, 1, 19, 82, 212, 364, 434, 364, 212, 82, 19, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 0 and for j=0, i >= 0.

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  5,   1;
  1,  7, 10,   7,   1;
  1,  9, 17,  17,   9,   1;
  1, 11, 26,  34,  26,  11,   1;
  1, 13, 37,  60,  60,  37,  13,   1;
  1, 15, 50,  97, 120,  97,  50,  15,  1;
  1, 17, 65, 147, 217, 217, 147,  65, 17,  1;
  1, 19, 82, 212, 364, 434, 364, 212, 82, 19,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A026615
       if k eq 0 or k eq n then return 1;
       elif k eq 1 or k eq n-1 then return 2*n-1;
       else return T(n-1, k-1) + T(n-1, k);
       end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 13 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n-1, k -1] + T[n-1,k]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 13 2024 *)
  • SageMath
    def T(n,k): # T = A026615
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return 2*n-1
        else: return T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 13 2024

Formula

Sum_{k=0..n} T(n, k) = A026622(n) (row sums).
From G. C. Greubel, Jun 13 2024: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000012(n).
T(n, 1) = A005408(n-1), n >= 1.
T(n, 2) = A098749(n), n >= 2.
T(n, 3) = A145066(n-2) - [n=3], n >= 3.
Sum_{k=0..n} (-1)^k*T(n, k) = A176742(n) + [n=2].
Sum_{k=0..n} (-1)^k*T(n-k, k) = b(n-2) + 2*[n=0] + [n=1], where b(n) = (1/6)*(-2*sqrt(3)*sin(Pi*n/3) + 2*sqrt(3)*sin(5*Pi*n/3) + 3*cos(Pi* n/2) + 3*cos(3*Pi*n/2) - 6).
Sum_{k=0..n} k*T(n, k) = n*(7*2^(n-3) - 1) + (1/4)*[n=1]. (End)

Extensions

Offset corrected by G. C. Greubel, Jun 13 2024