cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026624 a(n) = Sum_{j=0..n} Sum_{k=0..j} A026615(j, k).

Original entry on oeis.org

1, 3, 8, 20, 46, 100, 210, 432, 878, 1772, 3562, 7144, 14310, 28644, 57314, 114656, 229342, 458716, 917466, 1834968, 3669974, 7339988, 14680018, 29360080, 58720206, 117440460, 234880970, 469761992, 939524038, 1879048132
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 1 select 3 else 2*Self(n-1) + 2*(n-1): n in [1..41]]; // G. C. Greubel, Jun 15 2024
    
  • Mathematica
    Table[(7*2^n -4*(n+1) -Boole[n==0])/2, {n,0,40}] (* G. C. Greubel, Jun 15 2024 *)
  • SageMath
    [(7*2^n -4*(n+1) -int(n==0))/2 for n in range(41)] # G. C. Greubel, Jun 15 2024

Formula

G.f.: (1-x+x^2+x^3)/((1-x)^2*(1-2*x)) (Cf. A026622). - Ralf Stephan, Feb 05 2004
From G. C. Greubel, Jun 15 2024: (Start)
a(n) = 2*a(n-1) + 2*(n-1), with a(0) = 1, a(1) = 3.
a(n) = 7*2^(n-1) - 2*(n+1) - (1/2)*[n=0].
E.g.f.: (1/2)*( 7*exp(2*x) - 4*(x+1)*exp(x) - 1). (End)