Original entry on oeis.org
1, 2, 5, 12, 26, 54, 110, 222, 446, 894, 1790, 3582, 7166, 14334, 28670, 57342, 114686, 229374, 458750, 917502, 1835006, 3670014, 7340030, 14680062, 29360126, 58720254, 117440510, 234881022, 469762046, 939524094, 1879048190, 3758096382, 7516192766
Offset: 0
-
[n le 1 select n+1 else 7*2^(n-2) -2: n in [0..40]]; // G. C. Greubel, Jun 24 2024
-
Table[7*2^(n-2) -2 +Boole[n==1]/2 +(5/4)*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 24 2024 *)
-
Vec((1-x+x^2+x^3)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 17 2016
-
[(7*2^n -8 +2*int(n==1) +5*int(n==0))/4 for n in range(41)] # G. C. Greubel, Jun 24 2024
A026615
Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = 2*n-1 for n >= 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2 and n >= 4.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 10, 7, 1, 1, 9, 17, 17, 9, 1, 1, 11, 26, 34, 26, 11, 1, 1, 13, 37, 60, 60, 37, 13, 1, 1, 15, 50, 97, 120, 97, 50, 15, 1, 1, 17, 65, 147, 217, 217, 147, 65, 17, 1, 1, 19, 82, 212, 364, 434, 364, 212, 82, 19, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 5, 5, 1;
1, 7, 10, 7, 1;
1, 9, 17, 17, 9, 1;
1, 11, 26, 34, 26, 11, 1;
1, 13, 37, 60, 60, 37, 13, 1;
1, 15, 50, 97, 120, 97, 50, 15, 1;
1, 17, 65, 147, 217, 217, 147, 65, 17, 1;
1, 19, 82, 212, 364, 434, 364, 212, 82, 19, 1;
-
function T(n,k) // T = A026615
if k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return 2*n-1;
else return T(n-1, k-1) + T(n-1, k);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 13 2024
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n-1, k -1] + T[n-1,k]]];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 13 2024 *)
-
def T(n,k): # T = A026615
if k==0 or k==n: return 1
elif k==1 or k==n-1: return 2*n-1
else: return T(n-1, k-1) + T(n-1, k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 13 2024
Original entry on oeis.org
1, 3, 10, 34, 120, 434, 1596, 5940, 22308, 84370, 320892, 1226108, 4702880, 18097044, 69832600, 270118440, 1047043260, 4066132050, 15816664380, 61615392300, 240347793840, 938669220060, 3669940053000
Offset: 0
-
[n eq 0 select 1 else ((7*n-4)*(n+1)/(4*n-2))*Catalan(n): n in [0..30]]; // G. C. Greubel, Jun 13 2024
-
Table[(7*n-4)*Binomial[2*n,n]/(4*n-2) - Boole[n==0], {n,0,30}] (* G. C. Greubel, Jun 13 2024 *)
-
[(7*n-4)*binomial(2*n, n)/(4*n-2) - int(n==0) for n in range(31)] # G. C. Greubel, Jun 13 2024
Original entry on oeis.org
1, 7, 26, 97, 364, 1374, 5214, 19877, 76076, 292162, 1125332, 4345642, 16819256, 65226620, 253403190, 986022765, 3842200140, 14991031770, 58558504620, 228986816190, 896300806440, 3511441192740
Offset: 1
-
[n eq 1 select 1 else (7*n^2-4*n+1)*Binomial(2*n-3, n-2)/Binomial(n+1, 2): n in [1..40]]; // G. C. Greubel, Jun 13 2024
-
Table[(7*n^2-4*n+1)*Binomial[2*n-3, n-2]/Binomial[n+1,2] - 3*Boole[n== 1], {n, 40}] (* G. C. Greubel, Jun 13 2024 *)
-
[(7*n^2-4*n+1)*binomial(2*n-3, n-2)/binomial(n+1, 2) - 3*int(n==1) for n in range(1,41)] # G. C. Greubel, Jun 13 2024
Original entry on oeis.org
1, 11, 50, 212, 870, 3509, 14014, 55640, 220116, 868870, 3425092, 13491064, 53117350, 209097945, 823111350, 3240499440, 12759776700, 50254414650, 197979380220, 780170359800, 3075303389340
Offset: 2
-
[n eq 2 select 1 else (7*n^2-4*n+4)*Binomial(2*n,n-2)/(2*Binomial(2*n,2)): n in [2..40]]; // G. C. Greubel, Jun 13 2024
-
Table[(7*n^2-4*n+4)*Binomial[2*n,n-2]/(2*Binomial[2*n,2]) -Boole[n==2], {n,2,40}] (* G. C. Greubel, Jun 13 2024 *)
-
[(7*n^2-4*n+4)*binomial(2*n, n-2)/(2*binomial(2*n, 2)) - int(n==2) for n in range(2,41)] # G. C. Greubel, Jun 13 2024
Original entry on oeis.org
1, 5, 17, 60, 217, 798, 2970, 11154, 42185, 160446, 613054, 2351440, 9048522, 34916300, 135059220, 523521630, 2033066025, 7908332190, 30807696150, 120173896920, 469334610030, 1834970026500
Offset: 1
-
[n eq 1 select 1 else (7*n-4)*(n+1)*Catalan(n)/(4*(2*n-1)): n in [1..40]]; // G. C. Greubel, Jun 13 2024
-
Table[(7*n-4)*Binomial[2*n,n]/(4*(2*n-1)) -(1/2)*Boole[n==1], {n,40}] (* G. C. Greubel, Jun 13 2024 *)
-
[(7*n-4)*binomial(2*n,n)/(4*(2*n-1)) -(1/2)*int(n==1) for n in range(1,41)] # G. C. Greubel, Jun 13 2024
Original entry on oeis.org
1, 9, 37, 147, 576, 2244, 8723, 33891, 131716, 512278, 1994202, 7770734, 30310320, 118343970, 462501135, 1809134115, 7082699580, 27750808470, 108812919270, 426966196410, 1676471166240, 6586744582080, 25894139638302, 101852815940622, 400840469986376, 1578280410414204
Offset: 2
-
[n eq 2 select 1 else (7*n^2-11*n+6)*Catalan(n)/(4*(2*n-1)): n in [2..40]]; // G. C. Greubel, Jun 13 2024
-
Table[(7*n^2-11*n+6)*Binomial[2*n,n]/(4*(n+1)*(2*n-1))-Boole[n==2], {n,2,40}] (* G. C. Greubel, Jun 13 2024 *)
-
[(7*n^2-11*n+6)*binomial(2*n,n)/(4*(n+1)*(2*n-1)) -int(n==2) for n in range(2,41)] # G. C. Greubel, Jun 13 2024
Original entry on oeis.org
1, 1, 3, 5, 10, 17, 34, 60, 120, 217, 434, 798, 1596, 2970, 5940, 11154, 22308, 42185, 84370, 160446, 320892, 613054, 1226108, 2351440, 4702880, 9048522, 18097044, 34916300, 69832600, 135059220, 270118440, 523521630, 1047043260, 2033066025, 4066132050, 7908332190
Offset: 0
-
I:=[1,3]; [1] cat [n le 2 select I[n] else 2*((49*n^2-287*n+360 )*Self(n-1) + 2*(n-3)*(7*n-8)*(7*n-17)*Self(n-2) )/((n+1)*(7*n-24)*(7*n-15)) : n in [1..40]]; // G. C. Greubel, Jun 13 2024
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n -1,k-1] +T[n-1,k]]]; (* T = A026615 *)
Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jun 13 2024 *)
-
@CachedFunction
def T(n, k): # T = A026615
if k==0 or k==n: return 1
elif k==1 or k==n-1: return 2*n-1
else: return T(n-1, k-1) + T(n-1, k)
def A026621(n): return T(n, int(n//2))
[A026621(n) for n in range(41)] # G. C. Greubel, Jun 13 2024
A026623
a(n) = Sum_{k=0..floor(n/2)} A026615(n, k).
Original entry on oeis.org
1, 1, 4, 6, 18, 27, 72, 111, 283, 447, 1112, 1791, 4381, 7167, 17305, 28671, 68497, 114687, 271560, 458751, 1077949, 1835007, 4283069, 7340031, 17031503, 29360127, 67768777, 117440511, 269797323, 469762047, 1074583315, 1879048191
Offset: 0
-
I:=[1,4,6]; [1] cat [n le 3 select I[n] else ( 2*(7*n-24)*(7*n-29)*(n-1)*Self(n-1) + 4*(7*n-8)*(7*n-31)*(n-3)*Self(n-2) - 8*(7*n-15)*(7*n-24)*(n-4)*Self(n-3) - (147*n^3 - 1603*n^2 + 5896*n - 7152))/(n*(7*n-31)*(7*n-22)): n in [1..41]]; // G. C. Greubel, Jun 15 2024
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n -1, k-1] + T[n-1,k]]]; (* T = A026615 *)
A026623[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
Table[A026623[n], {n,0,40}] (* G. C. Greubel, Jun 15 2024 *)
-
@CachedFunction
def T(n, k): # T = A026615
if k==0 or k==n: return 1
elif k==1 or k==n-1: return 2*n-1
else: return T(n-1, k-1) + T(n-1, k)
def A026623(n): return sum(T(n,k) for k in range((n//2)+1))
[A026623(n) for n in range(41)] # G. C. Greubel, Jun 15 2024
A026625
a(n) = Sum_{k=0..floor(n/2)} A026615(n-k,k).
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 21, 36, 58, 96, 155, 253, 409, 664, 1074, 1740, 2815, 4557, 7373, 11932, 19306, 31240, 50547, 81789, 132337, 214128, 346466, 560596, 907063, 1467661, 2374725, 3842388, 6217114, 10059504, 16276619, 26336125, 42612745, 68948872, 111561618
Offset: 0
-
[n eq 1 select 1 else 3*Fibonacci(n+1) - 2*Fibonacci(n) - (3+(-1)^n)/2: n in [0..40]]; // G. C. Greubel, Jun 16 2024
-
Join[{1,1},Table[Fibonacci[n-1]+LucasL[n]-(3+(-1)^n)/2,{n,2,40}]] (* or *) Join[{1,1},LinearRecurrence[{1,2,-1,-1},{2,4,7,13},40]] (* Harvey P. Dale, Sep 27 2011 *)
-
Vec((1 - x^2 + x^3 + x^4 + x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
-
[3*fibonacci(n+1) -2*fibonacci(n) -(3+(-1)^n)//2 + int(n==1) for n in range(41)] # G. C. Greubel, Jun 16 2024
Showing 1-10 of 15 results.
Comments