cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A026622 a(n) = Sum_{k=0..n} A026615(n, k).

Original entry on oeis.org

1, 2, 5, 12, 26, 54, 110, 222, 446, 894, 1790, 3582, 7166, 14334, 28670, 57342, 114686, 229374, 458750, 917502, 1835006, 3670014, 7340030, 14680062, 29360126, 58720254, 117440510, 234881022, 469762046, 939524094, 1879048190, 3758096382, 7516192766
Offset: 0

Views

Author

Keywords

Comments

In general, a first order inhomogeneous recurrence of the form s(0) = a, s(n) = m*s(n-1) + k, n>0, will have a closed form of a*m^n +((m^n-1)/(m-1))*k. - Gary Detlefs, Jun 07 2024

Crossrefs

Programs

  • Magma
    [n le 1 select n+1 else 7*2^(n-2) -2: n in [0..40]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    Table[7*2^(n-2) -2 +Boole[n==1]/2 +(5/4)*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 24 2024 *)
  • PARI
    Vec((1-x+x^2+x^3)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 17 2016
    
  • SageMath
    [(7*2^n -8 +2*int(n==1) +5*int(n==0))/4 for n in range(41)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = 7 * 2^(n-2) - 2, a(0) = 1, a(1) = 2 (Cf. A026624). - Ralf Stephan, Feb 05 2004
a(n) = 2*a(n-1) + 2, n>2. - Gary Detlefs, Jun 22 2010
From Colin Barker, Feb 17 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
G.f.: (1 - x + x^2 + x^3)/((1 - x)*(1 - 2*x)). (End)
E.g.f.: (1/4)*( 5 + 2*x - 8*exp(x) + 7*exp(2*x) ). - G. C. Greubel, Jun 24 2024

A026615 Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = 2*n-1 for n >= 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2 and n >= 4.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 10, 7, 1, 1, 9, 17, 17, 9, 1, 1, 11, 26, 34, 26, 11, 1, 1, 13, 37, 60, 60, 37, 13, 1, 1, 15, 50, 97, 120, 97, 50, 15, 1, 1, 17, 65, 147, 217, 217, 147, 65, 17, 1, 1, 19, 82, 212, 364, 434, 364, 212, 82, 19, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 0 and for j=0, i >= 0.

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  5,   1;
  1,  7, 10,   7,   1;
  1,  9, 17,  17,   9,   1;
  1, 11, 26,  34,  26,  11,   1;
  1, 13, 37,  60,  60,  37,  13,   1;
  1, 15, 50,  97, 120,  97,  50,  15,  1;
  1, 17, 65, 147, 217, 217, 147,  65, 17,  1;
  1, 19, 82, 212, 364, 434, 364, 212, 82, 19,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A026615
       if k eq 0 or k eq n then return 1;
       elif k eq 1 or k eq n-1 then return 2*n-1;
       else return T(n-1, k-1) + T(n-1, k);
       end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 13 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n-1, k -1] + T[n-1,k]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 13 2024 *)
  • SageMath
    def T(n,k): # T = A026615
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return 2*n-1
        else: return T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 13 2024

Formula

Sum_{k=0..n} T(n, k) = A026622(n) (row sums).
From G. C. Greubel, Jun 13 2024: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000012(n).
T(n, 1) = A005408(n-1), n >= 1.
T(n, 2) = A098749(n), n >= 2.
T(n, 3) = A145066(n-2) - [n=3], n >= 3.
Sum_{k=0..n} (-1)^k*T(n, k) = A176742(n) + [n=2].
Sum_{k=0..n} (-1)^k*T(n-k, k) = b(n-2) + 2*[n=0] + [n=1], where b(n) = (1/6)*(-2*sqrt(3)*sin(Pi*n/3) + 2*sqrt(3)*sin(5*Pi*n/3) + 3*cos(Pi* n/2) + 3*cos(3*Pi*n/2) - 6).
Sum_{k=0..n} k*T(n, k) = n*(7*2^(n-3) - 1) + (1/4)*[n=1]. (End)

Extensions

Offset corrected by G. C. Greubel, Jun 13 2024

A026617 a(n) = A026615(2*n, n-1).

Original entry on oeis.org

1, 7, 26, 97, 364, 1374, 5214, 19877, 76076, 292162, 1125332, 4345642, 16819256, 65226620, 253403190, 986022765, 3842200140, 14991031770, 58558504620, 228986816190, 896300806440, 3511441192740
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else (7*n^2-4*n+1)*Binomial(2*n-3, n-2)/Binomial(n+1, 2): n in [1..40]]; // G. C. Greubel, Jun 13 2024
    
  • Mathematica
    Table[(7*n^2-4*n+1)*Binomial[2*n-3, n-2]/Binomial[n+1,2] - 3*Boole[n== 1], {n, 40}] (* G. C. Greubel, Jun 13 2024 *)
  • SageMath
    [(7*n^2-4*n+1)*binomial(2*n-3, n-2)/binomial(n+1, 2) - 3*int(n==1) for n in range(1,41)] # G. C. Greubel, Jun 13 2024

Formula

From G. C. Greubel, Jun 13 2024: (Start)
a(n) = (7*n^2 - 4*n + 1)*binomial(2*n-3, n-2)/binomial(n+1, 2) - 3*[n= 1].
G.f.: ( 2 - 5*x + 2*x^2 - (2 - x + 2*x^2)*sqrt(1 - 4*x) )/(2*x*sqrt(1-4*x)).
E.g.f.: (1/2)*( (1 - 2*x) - (1 - 2*x)*exp(2*x)*BesselI(0, 2*x) + 2*(2 - x)*exp(2*x)*BesselI(1, 2*x) ). (End)

A026618 a(n) = A026618(2*n, n-2).

Original entry on oeis.org

1, 11, 50, 212, 870, 3509, 14014, 55640, 220116, 868870, 3425092, 13491064, 53117350, 209097945, 823111350, 3240499440, 12759776700, 50254414650, 197979380220, 780170359800, 3075303389340
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 2 select 1 else (7*n^2-4*n+4)*Binomial(2*n,n-2)/(2*Binomial(2*n,2)): n in [2..40]]; // G. C. Greubel, Jun 13 2024
    
  • Mathematica
    Table[(7*n^2-4*n+4)*Binomial[2*n,n-2]/(2*Binomial[2*n,2]) -Boole[n==2], {n,2,40}] (* G. C. Greubel, Jun 13 2024 *)
  • SageMath
    [(7*n^2-4*n+4)*binomial(2*n, n-2)/(2*binomial(2*n, 2)) - int(n==2) for n in range(2,41)] # G. C. Greubel, Jun 13 2024

Formula

From G. C. Greubel, Jun 13 2024: (Start)
a(n) = (7*n^2 - 4*n + 4)*binomial(2*n, n-2)/(2*binomial(2*n, 2)) -[n=2].
G.f.: ( (2 - 9*x + 8*x^2 - 2*x^3) - (2 - 5*x + 2*x^2 + 2*x^4)*sqrt(1 - 4*x) )/(2*x^2*sqrt(1-4*x)).
E.g.f.: exp(2*x)*( (3 - x)*BesselI(0, 2*x) + (x - 1 - 2/x)*BesselI(1, 2*x) ) - (1 + x^2/2). (End)

A026619 a(n) = A026615(2*n-1, n-1).

Original entry on oeis.org

1, 5, 17, 60, 217, 798, 2970, 11154, 42185, 160446, 613054, 2351440, 9048522, 34916300, 135059220, 523521630, 2033066025, 7908332190, 30807696150, 120173896920, 469334610030, 1834970026500
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else (7*n-4)*(n+1)*Catalan(n)/(4*(2*n-1)): n in [1..40]]; // G. C. Greubel, Jun 13 2024
    
  • Mathematica
    Table[(7*n-4)*Binomial[2*n,n]/(4*(2*n-1)) -(1/2)*Boole[n==1], {n,40}] (* G. C. Greubel, Jun 13 2024 *)
  • SageMath
    [(7*n-4)*binomial(2*n,n)/(4*(2*n-1)) -(1/2)*int(n==1) for n in range(1,41)] # G. C. Greubel, Jun 13 2024

Formula

From G. C. Greubel, Jun 13 2024: (Start)
a(n) = (7*n - 4)*binomial(2*n, n)/(4*(2*n-1)) -(1/2)*[n=1].
G.f.: ( (2 - x) - (2 + x)*sqrt(1-4*x) )/(2*sqrt(1-4*x))
E.g.f.: (1/2)*exp(2*x)*( (2 - x)*BesselI(0, 2*x) + x*BesselI(1, 2*x) ) - (1 + x/2). (End)

A026620 a(n) = A026615(2*n-1, n-2).

Original entry on oeis.org

1, 9, 37, 147, 576, 2244, 8723, 33891, 131716, 512278, 1994202, 7770734, 30310320, 118343970, 462501135, 1809134115, 7082699580, 27750808470, 108812919270, 426966196410, 1676471166240, 6586744582080, 25894139638302, 101852815940622, 400840469986376, 1578280410414204
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 2 select 1 else (7*n^2-11*n+6)*Catalan(n)/(4*(2*n-1)): n in [2..40]]; // G. C. Greubel, Jun 13 2024
    
  • Mathematica
    Table[(7*n^2-11*n+6)*Binomial[2*n,n]/(4*(n+1)*(2*n-1))-Boole[n==2], {n,2,40}] (* G. C. Greubel, Jun 13 2024 *)
  • SageMath
    [(7*n^2-11*n+6)*binomial(2*n,n)/(4*(n+1)*(2*n-1)) -int(n==2) for n in range(2,41)] # G. C. Greubel, Jun 13 2024

Formula

From G. C. Greubel, Jun 13 2024: (Start)
a(n) = (7*n^2 - 11*n + 6)*binomial(2*n, n)/(4*(n+1)*(2*n-1)) - [n=2].
G.f.: ( (2 - 7*x + 3*x^2) - (2 - 3*x + x^2 + 2*x^3)*sqrt(1-4*x) )/(2*x*sqrt(1-4*x)).
E.g.f.: (1/2)*exp(2*x)*( 3*(-1 + x)*BesselI(0, 2*x) + (4 - 3*x)*BesselI(1, 2*x) ) + (1/2)*(3 - x - x^2). (End)

A026621 a(n) = A026615(n, floor(n/2)).

Original entry on oeis.org

1, 1, 3, 5, 10, 17, 34, 60, 120, 217, 434, 798, 1596, 2970, 5940, 11154, 22308, 42185, 84370, 160446, 320892, 613054, 1226108, 2351440, 4702880, 9048522, 18097044, 34916300, 69832600, 135059220, 270118440, 523521630, 1047043260, 2033066025, 4066132050, 7908332190
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3]; [1] cat [n le 2 select I[n] else 2*((49*n^2-287*n+360 )*Self(n-1) + 2*(n-3)*(7*n-8)*(7*n-17)*Self(n-2) )/((n+1)*(7*n-24)*(7*n-15)) : n in [1..40]]; // G. C. Greubel, Jun 13 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n -1,k-1] +T[n-1,k]]]; (* T = A026615 *)
    Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jun 13 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026615
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return 2*n-1
        else: return T(n-1, k-1) + T(n-1, k)
    def A026621(n): return T(n, int(n//2))
    [A026621(n) for n in range(41)] # G. C. Greubel, Jun 13 2024

Formula

a(n) = 2*( (49*n^2 - 287*n + 360)*a(n-1) + 2*(n-3)*(7*n-8)*(7*n-17)*a(n-2) )/((n+1)*(7*n-24)*(7*n-15)) for n > 2. - G. C. Greubel, Jun 13 2024

A026623 a(n) = Sum_{k=0..floor(n/2)} A026615(n, k).

Original entry on oeis.org

1, 1, 4, 6, 18, 27, 72, 111, 283, 447, 1112, 1791, 4381, 7167, 17305, 28671, 68497, 114687, 271560, 458751, 1077949, 1835007, 4283069, 7340031, 17031503, 29360127, 67768777, 117440511, 269797323, 469762047, 1074583315, 1879048191
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,6]; [1] cat [n le 3 select I[n] else ( 2*(7*n-24)*(7*n-29)*(n-1)*Self(n-1) + 4*(7*n-8)*(7*n-31)*(n-3)*Self(n-2) - 8*(7*n-15)*(7*n-24)*(n-4)*Self(n-3) - (147*n^3 - 1603*n^2 + 5896*n - 7152))/(n*(7*n-31)*(7*n-22)): n in [1..41]]; // G. C. Greubel, Jun 15 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n -1, k-1] + T[n-1,k]]]; (* T = A026615 *)
    A026623[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
    Table[A026623[n], {n,0,40}] (* G. C. Greubel, Jun 15 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026615
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return 2*n-1
        else: return T(n-1, k-1) + T(n-1, k)
    def A026623(n): return sum(T(n,k) for k in range((n//2)+1))
    [A026623(n) for n in range(41)] # G. C. Greubel, Jun 15 2024

Formula

a(n) = ( 2*(7*n-24)*(7*n-29)*(n-1)*a(n-1) + 4*(7*n-8)*(7*n-31)*(n-3)*a(n-2) - 8*(7*n-15)*(7*n-24)*(n-4)*a(n-3) - (147*n^3 - 1603*n^2 + 5896*n - 7152))/(n*(7*n-31)*(7*n-22)), for n > 3, with a(0) = a(1) = 1, a(2) = 4, and a(3) = 6. - G. C. Greubel, Jun 15 2024

A026624 a(n) = Sum_{j=0..n} Sum_{k=0..j} A026615(j, k).

Original entry on oeis.org

1, 3, 8, 20, 46, 100, 210, 432, 878, 1772, 3562, 7144, 14310, 28644, 57314, 114656, 229342, 458716, 917466, 1834968, 3669974, 7339988, 14680018, 29360080, 58720206, 117440460, 234880970, 469761992, 939524038, 1879048132
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 1 select 3 else 2*Self(n-1) + 2*(n-1): n in [1..41]]; // G. C. Greubel, Jun 15 2024
    
  • Mathematica
    Table[(7*2^n -4*(n+1) -Boole[n==0])/2, {n,0,40}] (* G. C. Greubel, Jun 15 2024 *)
  • SageMath
    [(7*2^n -4*(n+1) -int(n==0))/2 for n in range(41)] # G. C. Greubel, Jun 15 2024

Formula

G.f.: (1-x+x^2+x^3)/((1-x)^2*(1-2*x)) (Cf. A026622). - Ralf Stephan, Feb 05 2004
From G. C. Greubel, Jun 15 2024: (Start)
a(n) = 2*a(n-1) + 2*(n-1), with a(0) = 1, a(1) = 3.
a(n) = 7*2^(n-1) - 2*(n+1) - (1/2)*[n=0].
E.g.f.: (1/2)*( 7*exp(2*x) - 4*(x+1)*exp(x) - 1). (End)

A026625 a(n) = Sum_{k=0..floor(n/2)} A026615(n-k,k).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 21, 36, 58, 96, 155, 253, 409, 664, 1074, 1740, 2815, 4557, 7373, 11932, 19306, 31240, 50547, 81789, 132337, 214128, 346466, 560596, 907063, 1467661, 2374725, 3842388, 6217114, 10059504, 16276619, 26336125, 42612745, 68948872, 111561618
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 3*Fibonacci(n+1) - 2*Fibonacci(n) - (3+(-1)^n)/2: n in [0..40]]; // G. C. Greubel, Jun 16 2024
    
  • Mathematica
    Join[{1,1},Table[Fibonacci[n-1]+LucasL[n]-(3+(-1)^n)/2,{n,2,40}]] (* or *) Join[{1,1},LinearRecurrence[{1,2,-1,-1},{2,4,7,13},40]] (* Harvey P. Dale, Sep 27 2011 *)
  • PARI
    Vec((1 - x^2 + x^3 + x^4 + x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
    
  • SageMath
    [3*fibonacci(n+1) -2*fibonacci(n) -(3+(-1)^n)//2 + int(n==1) for n in range(41)] # G. C. Greubel, Jun 16 2024

Formula

For n>1, a(n) = Fibonacci(n-1) + Lucas(n) - (3 + (-1)^n)/2. - Ralf Stephan, May 13 2004
From Colin Barker, Jul 12 2017: (Start)
G.f.: (1 - x^2 + x^3 + x^4 + x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)).
a(n) = 2^(-1-n)*(-5*((-2)^n + 3*2^n) - (-15+sqrt(5))*(1+sqrt(5))^n + (1-sqrt(5))^n*(15+sqrt(5))) / 5 for n>1.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>5.
(End)
Showing 1-10 of 15 results. Next