cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026625 a(n) = Sum_{k=0..floor(n/2)} A026615(n-k,k).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 21, 36, 58, 96, 155, 253, 409, 664, 1074, 1740, 2815, 4557, 7373, 11932, 19306, 31240, 50547, 81789, 132337, 214128, 346466, 560596, 907063, 1467661, 2374725, 3842388, 6217114, 10059504, 16276619, 26336125, 42612745, 68948872, 111561618
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 3*Fibonacci(n+1) - 2*Fibonacci(n) - (3+(-1)^n)/2: n in [0..40]]; // G. C. Greubel, Jun 16 2024
    
  • Mathematica
    Join[{1,1},Table[Fibonacci[n-1]+LucasL[n]-(3+(-1)^n)/2,{n,2,40}]] (* or *) Join[{1,1},LinearRecurrence[{1,2,-1,-1},{2,4,7,13},40]] (* Harvey P. Dale, Sep 27 2011 *)
  • PARI
    Vec((1 - x^2 + x^3 + x^4 + x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
    
  • SageMath
    [3*fibonacci(n+1) -2*fibonacci(n) -(3+(-1)^n)//2 + int(n==1) for n in range(41)] # G. C. Greubel, Jun 16 2024

Formula

For n>1, a(n) = Fibonacci(n-1) + Lucas(n) - (3 + (-1)^n)/2. - Ralf Stephan, May 13 2004
From Colin Barker, Jul 12 2017: (Start)
G.f.: (1 - x^2 + x^3 + x^4 + x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)).
a(n) = 2^(-1-n)*(-5*((-2)^n + 3*2^n) - (-15+sqrt(5))*(1+sqrt(5))^n + (1-sqrt(5))^n*(15+sqrt(5))) / 5 for n>1.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>5.
(End)