cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026635 a(n) = Sum_{i=0..n} Sum_{j=0..n} A026626(i,j).

Original entry on oeis.org

1, 3, 8, 18, 40, 84, 174, 354, 716, 1440, 2890, 5790, 11592, 23196, 46406, 92826, 185668, 371352, 742722, 1485462, 2970944, 5941908, 11883838, 23767698, 47535420, 95070864, 190141754, 380283534, 760567096, 1521134220, 3042268470, 6084536970, 12169073972
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (17*2^n -6*n-9+(-1)^n)/6: n in [0..40]]; // G. C. Greubel, Jun 21 2024
    
  • Mathematica
    LinearRecurrence[{3,-1,-3,2},{1,3,8,18,40},40] (* Harvey P. Dale, Jan 17 2024 *)
  • PARI
    Vec((1 + x^4) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Sep 29 2017
    
  • SageMath
    [(17*2^n -6*n -9 +(-1)^n -3*int(n==0))/6 for n in range(41)] # G. C. Greubel, Jun 21 2024

Formula

G.f.: (1+x^4)/((1-x)*(1-2*x)*(1-x^2)). - Ralf Stephan, Apr 30 2004
From Colin Barker, Sep 29 2017: (Start)
a(n) = (17*2^n - 6*n - 9 + (-1)^n)/6 for n>0.
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n>4. (End)
E.g.f.: (1/6)*(-3 - 3*(3+2*x)*exp(x) + 17*exp(2*x) + exp(-x)). - G. C. Greubel, Jun 21 2024