cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026636 a(n) = Sum_{k=0..floor(n/2)} A026626(n-k, k).

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 30, 47, 78, 125, 205, 330, 536, 866, 1404, 2270, 3675, 5945, 9622, 15567, 25190, 40757, 65949, 106706, 172656, 279362, 452020, 731382, 1183403, 1914785, 3098190, 5012975, 8111166, 13124141, 21235309
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,4,6,11,17,30]; [1,1] cat [n le 6 select I[n] else Self(n-1) +Self(n-2) +Self(n-4) -Self(n-5) -Self(n-6): n in [1..50]]; // G. C. Greubel, Jun 21 2024
    
  • Mathematica
    LinearRecurrence[{1,1,0,1,-1,-1}, {1,1,2,4,6,11,17,30}, 41] (* G. C. Greubel, Jun 21 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026636
        if n<8: return (1,1,2,4,6,11,17,30)[n]
        else: return a(n-1) +a(n-2) +a(n-4) -a(n-5) -a(n-6)
    [a(n) for n in range(41)] # G. C. Greubel, Jun 21 2024

Formula

G.f.: (1 + x^3 - x^4 + x^5 + x^7)/((1-x^4)*(1-x-x^2)).
From G. C. Greubel, Jun 21 2024: (Start)
a(n) = (1/20)*(2*LucasL(n-1) + 70*Fibonacci(n-1) - 15*(1+(-1)^n) - 4*cos((n-1)*Pi/2) - 2*sin((n-1)*Pi/2)) - [n=0] + [n=1].
E.g.f.: (1/10)*(cos(x) - 2*sin(x) - 15*cosh(x) - 10*(1 - x) + 2*exp(x/2)*(17*cosh(sqrt(5)*x/2) - 3*sqrt(5)*sinh(sqrt(5)*x/2))). (End)