cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026674 a(n) = T(2n-1,n-1) = T(2n,n+1), T given by A026725.

Original entry on oeis.org

1, 4, 16, 65, 267, 1105, 4597, 19196, 80380, 337284, 1417582, 5965622, 25130844, 105954110, 447015744, 1886996681, 7969339643, 33670068133, 142301618265, 601586916703, 2543852427847, 10759094481491, 45513214057191, 192560373660245, 814807864164497
Offset: 1

Views

Author

Keywords

Crossrefs

Also a(n) = T(2n-1, n-1), T given by A026670.

Programs

  • GAP
    List([1..30], n-> Sum([1..n], k-> Binomial(2*n, n+k)*Fibonacci(k+1) *(k/n) )); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (-1+5*x +(1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
    
  • Maple
    a := n -> add(binomial(2*n,n+k)*combinat:-fibonacci(1+k)*(k/n), k=1..n):
    seq(a(n), n=1..30); # Peter Luschny, Apr 28 2016
  • Mathematica
    a[n_] := Sum[Binomial[2n, n+k] Fibonacci[k+1] k/n, {k, 1, n}];
    Array[a, 30] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
  • Maxima
    a(n):=sum(k*binomial(2*n,n-k)*(sum(binomial(k-i,i),i,0,k/2)),k,1,n)/n; /* Vladimir Kruchinin, Apr 28 2016 */
    
  • PARI
    a(n)=sum(k=1,n,k*binomial(2*n,n-k)*sum(i=0,k\2,binomial(k-i,i)))/n \\ Charles R Greathouse IV, Apr 28 2016
    
  • Sage
    a=((-1+5*x +(1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 16 2019
    

Formula

G.f.: (1/2)*((1-x)/(sqrt(1-4*x)-x) - 1). - Ralf Stephan, Feb 05 2004
G.f.: x*c(x)^3/(1-x*c(x)^3) = (1-5*x -(1-x)*sqrt(1-4*x))/(2*(x^2+4*x-1)), c(x) the g.f. of A000108. - Paul Barry, Mar 19 2007
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is the upper left term in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, ...
6, 1, 1, 1, 0, 0, 0, ...
10, 1, 1, 1, 1, 0, 0, ...
15, 1, 1, 1, 1, 1, 0, ...
21, 1, 1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence n*a(n) +(-9*n+8)*a(n-1) +23*(n-2)*a(n-2) +(-11*n+48)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Nov 26 2012
a(n) = (1/n)*Sum_{k=1..n} k*binomial(2*n,n-k)*Sum_{i=0..k/2} binomial(k-i,i). - Vladimir Kruchinin, Apr 28 2016
a(n) ~ (3 - sqrt(5)) * (2 + sqrt(5))^n / (2*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019