A026728 a(n) = number of primes of the form k*(n-k) + 1.
0, 1, 1, 1, 2, 0, 3, 2, 1, 1, 4, 1, 6, 1, 1, 2, 8, 1, 5, 3, 1, 4, 7, 1, 7, 1, 4, 5, 8, 0, 10, 6, 2, 2, 7, 1, 9, 8, 4, 4, 14, 1, 16, 3, 3, 5, 12, 3, 7, 7, 4, 11, 21, 0, 11, 4, 7, 6, 11, 2, 12, 9, 7, 10, 7, 1, 22, 7, 7, 5, 17, 3, 23, 10, 2, 9, 19, 2, 19, 8, 5, 8, 23, 1, 16, 6, 4, 11, 14, 4, 16, 12, 9, 5, 12
Offset: 1
Keywords
Examples
a(7) = 3, 1*6 +1 = 7, 2*5 +1 = 11, 3*4 +1 = 13. n=16: {m: m=x*y+1 and x+y=16} = {16,29,40,49,56,61,64,65} containing two primes: 29 and 61, therefore a(16)=2. n = 7 is the only number which gives primes for all possible values of k.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; nops(select(isprime,[seq(k*(n-k)+1, k=1..n/2)])) end proc: map(f, [$1..100]); # Robert Israel, Oct 30 2024
-
Mathematica
a[n_] := Select[(Times @@ # + 1&) /@ IntegerPartitions[n, {2}], PrimeQ] // Length; Array[a, 95] (* Jean-François Alcover, Aug 02 2018 *)
-
PARI
{ a(n)=local(r);r=0;for(k=1,n\2,if(isprime(k*(n-k)+1),r++));r } \\ Max Alekseyev, Oct 04 2005
Extensions
More terms from Max Alekseyev, Oct 04 2005
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
Comments