A026734 a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026725.
1, 3, 7, 16, 34, 74, 154, 330, 682, 1451, 2989, 6332, 13018, 27495, 56449, 118954, 243964, 513180, 1051612, 2208856, 4523344, 9489604, 19422124, 40704746, 83269990, 174366100, 356558320, 746073604, 1525104172, 3189119418
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Partial sums of A026732.
Programs
-
GAP
T:= function(n,k) if n<0 then return 0; elif k=0 or k=n then return 1; elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> T(j,k) )))); # G. C. Greubel, Oct 26 2019
-
Maple
A026725:= proc(n,k) option remember; if n<0 or k<0 then 0; elif k=0 or k=n then 1; elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; fi; end proc:seq(add(add(A026725(i,j), j=0..n), i=0..n), n=0..30); # G. C. Greubel, Oct 26 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[j, k], {k,0,n}, {j,0,n}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
-
PARI
T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ))); vector(31, n, sum(j=0,n-1, sum(i=0,n-1, T(j,i))) ) \\ G. C. Greubel, Oct 26 2019
-
Sage
@CachedFunction def T(n, k): if (n<0): return 0 elif (k==0 or k==n): return 1 elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [sum( sum( T(j, k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 26 2019