cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026734 a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026725.

Original entry on oeis.org

1, 3, 7, 16, 34, 74, 154, 330, 682, 1451, 2989, 6332, 13018, 27495, 56449, 118954, 243964, 513180, 1051612, 2208856, 4523344, 9489604, 19422124, 40704746, 83269990, 174366100, 356558320, 746073604, 1525104172, 3189119418
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums of A026732.

Programs

  • GAP
    T:= function(n,k)
        if n<0 then return 0;
        elif k=0 or k=n then return 1;
        elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> T(j,k) )))); # G. C. Greubel, Oct 26 2019
  • Maple
    A026725:= proc(n,k) option remember;
        if n<0 or k<0 then 0;
        elif k=0 or k=n then 1;
        elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ;
       else procname(n-1,k-1)+procname(n-1,k) ;
    fi; end proc:seq(add(add(A026725(i,j), j=0..n), i=0..n), n=0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[j, k], {k,0,n}, {j,0,n}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )));
    vector(31, n, sum(j=0,n-1, sum(i=0,n-1, T(j,i))) ) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum( sum( T(j, k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 26 2019