A026737 a(n) = T(2*n,n), T given by A026736.
1, 2, 6, 21, 79, 309, 1237, 5026, 20626, 85242, 354080, 1476368, 6173634, 25873744, 108628550, 456710589, 1922354351, 8098984433, 34147706833, 144068881455, 608151037123, 2568318694867, 10850577045131, 45856273670841
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- David Callan, A bijection for two sequences in OEIS, arXiv:1602.08347 [math.CO], 2016.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-5*x+4*x^2 -(1-5*x)*Sqrt(1-4*x))/(2*x*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019 -
Mathematica
T[, 0]=T[n, n_]=1; T[n_, k_]:= T[n, k]= If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 22 2018 *) CoefficientList[Series[(1-5x+4x^2 -(1-5x)*Sqrt[1-4x])/(2*x*(1-4x-x^2)), {x, 0, 30}], x] (* G. C. Greubel, Jul 16 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((1-5*x+4*x^2 -(1-5*x)*sqrt(1-4*x))/(2*x*(1-4*x-x^2))) \\ G. C. Greubel, Jul 16 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [T(2*n, n) for n in (0..30)] # G. C. Greubel, Jul 16 2019
Formula
G.f.: (1-5*x+4*x^2 -(1-5*x)*sqrt(1-4*x))/(2*x*(1-4*x-x^2)). - G. C. Greubel, Jul 16 2019
a(n) ~ (47 - 21*sqrt(5)) * (2 + sqrt(5))^(n+2) / (2*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
G.f. G satisfies 0 = G^2*(x^3 + 4*x^2 - x) + G*(4*x^2 - 5*x + 1) + 4*x - 1. - F. Chapoton, Oct 16 2021
Comments