cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026747 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and 1 <= k <= n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 11, 5, 1, 1, 7, 17, 16, 6, 1, 1, 9, 30, 44, 22, 7, 1, 1, 10, 39, 74, 66, 29, 8, 1, 1, 12, 58, 143, 184, 95, 37, 9, 1, 1, 13, 70, 201, 327, 279, 132, 46, 10, 1, 1, 15, 95, 329, 671, 790, 411, 178, 56, 11, 1, 1, 16, 110, 424, 1000, 1461, 1201, 589, 234, 67, 12, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 3,  1;
  1, 4,  4,  1;
  1, 6, 11,  5,  1;
  1, 7, 17, 16,  6, 1;
  1, 9, 30, 44, 22, 7, 1;
		

Crossrefs

Cf. A026754 (row sums).

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n mod 2)=0 and k List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 28 2019
  • Maple
    A026747 := proc(n,k)
        if k=0 or k = n then
            1;
        elif type(n,'even') and k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if ;
    end proc: # R. J. Mathar, Jun 30 2013
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && 1<=k<=n/2, T[n-1, k-1] +T[n-2, k-1] +T[n-1, k], T[n-1, k-1] +T[n-1, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    T(n,k) = if(k==0 || k==n, 1, if(n%2==0 && k<=n/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) ));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 28 2019
    

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, 2h+i)-to-(i+1, 2h+i+1) for i >= 0, h>=0.

Extensions

More terms added by G. C. Greubel, Oct 28 2019