A026747 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is even and 1 <= k <= n/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 6, 11, 5, 1, 1, 7, 17, 16, 6, 1, 1, 9, 30, 44, 22, 7, 1, 1, 10, 39, 74, 66, 29, 8, 1, 1, 12, 58, 143, 184, 95, 37, 9, 1, 1, 13, 70, 201, 327, 279, 132, 46, 10, 1, 1, 15, 95, 329, 671, 790, 411, 178, 56, 11, 1, 1, 16, 110, 424, 1000, 1461, 1201, 589, 234, 67, 12, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 4, 4, 1; 1, 6, 11, 5, 1; 1, 7, 17, 16, 6, 1; 1, 9, 30, 44, 22, 7, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A026754 (row sums).
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; elif (n mod 2)=0 and k
List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 28 2019 -
Maple
A026747 := proc(n,k) if k=0 or k = n then 1; elif type(n,'even') and k <= n/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; end if ; end proc: # R. J. Mathar, Jun 30 2013
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && 1<=k<=n/2, T[n-1, k-1] +T[n-2, k-1] +T[n-1, k], T[n-1, k-1] +T[n-1, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 28 2019 *)
-
PARI
T(n,k) = if(k==0 || k==n, 1, if(n%2==0 && k<=n/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) )); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 28 2019
-
Sage
def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 28 2019
Formula
T(n, k) = number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, 2h+i)-to-(i+1, 2h+i+1) for i >= 0, h>=0.
Extensions
More terms added by G. C. Greubel, Oct 28 2019