A026748 a(n) = T(2n,n), T given by A026747.
1, 3, 11, 44, 184, 790, 3452, 15278, 68290, 307696, 1395696, 6367199, 29193025, 134442102, 621609060, 2884432810, 13428450520, 62703991531, 293606387095, 1378309455352, 6485734373020, 30586630485443, 144544075759391, 684395988590939
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
A026747 := proc(n,k) option remember; if k=0 or k = n then 1; elif type(n,'even') and k <= n/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; end if ; end proc: seq(A026747(2*n,n), n=0..30); # G. C. Greubel, Oct 29 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[2n, n], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [T(2*n, n) for n in (0..30)] # G. C. Greubel, Oct 29 2019