A026755 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026747.
1, 1, 4, 5, 18, 25, 84, 124, 398, 612, 1901, 3012, 9126, 14800, 43968, 72658, 212417, 356544, 1028520, 1749344, 4989477, 8583258, 24244139, 42121079, 117973702, 206754379, 574811040, 1015179978, 2803969443, 4986329826
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
A026747 := proc(n,k) option remember; if k=0 or k = n then 1; elif type(n,'even') and k <= n/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; end if ; end proc: seq(add(A026747(n,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 29 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[EvenQ[n] && k<=n/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[Sum[T[n, k], Floor[n/2]], {n,0,30}] (* G. C. Greubel, Oct 29 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==0 and k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 29 2019