cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026758 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is odd and 1 <= k <= (n-1)/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 7, 4, 1, 1, 7, 16, 11, 5, 1, 1, 8, 23, 27, 16, 6, 1, 1, 10, 38, 66, 43, 22, 7, 1, 1, 11, 48, 104, 109, 65, 29, 8, 1, 1, 13, 69, 190, 279, 174, 94, 37, 9, 1, 1, 14, 82, 259, 469, 453, 268, 131, 46, 10, 1, 1, 16, 109, 410, 918, 1201, 721, 399, 177, 56, 11, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  3,  1;
  1,  5,  7,  4,  1;
  1,  7, 16, 11,  5,  1;
  1,  8, 23, 27, 16,  6, 1;
  1, 10, 38, 66, 43, 22, 7, 1;
		

Crossrefs

Cf. A026765 (row sums).

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n mod 2)=1 and k List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 29 2019
  • Maple
    T:= proc(n,k) option remember;
       if k=0 or k = n then 1;
       elif type(n,'odd') and k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(seq(T(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 29 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2019 *)
  • PARI
    T(n,k) = if(k==0 || k==n, 1, if(n%2==1 && k<=(n-1)/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) ));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 29 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 29 2019
    

Formula

T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, 2h+i+1)-to-(i+1, 2h+i+2) for i >= 0, h>=0.

Extensions

Offset corrected by Sean A. Irvine, Oct 25 2019
More terms added by G. C. Greubel, Oct 29 2019