A026758 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; for n >= 2 and 1 <= k <= n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is odd and 1 <= k <= (n-1)/2, else T(n,k) = T(n-1,k-1) + T(n-1,k).
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 7, 4, 1, 1, 7, 16, 11, 5, 1, 1, 8, 23, 27, 16, 6, 1, 1, 10, 38, 66, 43, 22, 7, 1, 1, 11, 48, 104, 109, 65, 29, 8, 1, 1, 13, 69, 190, 279, 174, 94, 37, 9, 1, 1, 14, 82, 259, 469, 453, 268, 131, 46, 10, 1, 1, 16, 109, 410, 918, 1201, 721, 399, 177, 56, 11, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, 4, 3, 1; 1, 5, 7, 4, 1; 1, 7, 16, 11, 5, 1; 1, 8, 23, 27, 16, 6, 1; 1, 10, 38, 66, 43, 22, 7, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A026765 (row sums).
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; elif (n mod 2)=1 and k
List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 29 2019 -
Maple
T:= proc(n,k) option remember; if k=0 or k = n then 1; elif type(n,'odd') and k <= (n-1)/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; end if ; end proc; seq(seq(T(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 29 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2019 *)
-
PARI
T(n,k) = if(k==0 || k==n, 1, if(n%2==1 && k<=(n-1)/2, T(n-1,k-1) + T(n-2,k-1) + T(n-1,k), T(n-1,k-1) + T(n-1,k) )); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 29 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 29 2019
Formula
T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, 2h+i+1)-to-(i+1, 2h+i+2) for i >= 0, h>=0.
Extensions
Offset corrected by Sean A. Irvine, Oct 25 2019
More terms added by G. C. Greubel, Oct 29 2019