cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026759 a(n) = T(2n, n), T given by A026758.

Original entry on oeis.org

1, 2, 7, 27, 109, 453, 1922, 8284, 36155, 159435, 709246, 3178992, 14343567, 65099245, 297015765, 1361584755, 6268757195, 28975155915, 134410918700, 625578384150, 2920488902795, 13672762887465, 64179220019365, 301987822527627
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( ((1-x)*Sqrt(1 - 4*x) - Sqrt(1 - 6*x + 5*x^2))/(2*x^2) )); // G. C. Greubel, Oct 31 2019
    
  • Maple
    seq(coeff(series(((1-x)*sqrt(1-4*x) - sqrt(1 -6*x +5*x^2))/(2*x^2), x, n+2), x, n), n = 0..30); # G. C. Greubel, Oct 31 2019
  • Mathematica
    CoefficientList[Normal[Series[((1-x)Sqrt[1-4x] -Sqrt[1-6x+5x^2])/(2x^2), {x, 0, 30}]], x] (* David Callan, Feb 01 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(((1-x)*sqrt(1 - 4*x) - sqrt(1 - 6*x + 5*x^2))/(2*x^2)) \\ G. C. Greubel, Oct 31 2019
    
  • Sage
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(((1-x)*sqrt(1-4*x) - sqrt(1-6*x+5*x^2))/(2*x^2)).list()
    A077952_list(30) # G. C. Greubel, Oct 31 2019

Formula

a(n) = A002212(n+1) - A000245(n). - David Callan, Feb 01 2014
G.f.: ((1-x)*sqrt(1 - 4*x) - sqrt(1 - 6*x + 5*x^2))/(2*x^2). - G. C. Greubel, Oct 31 2019