cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026766 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026758.

Original entry on oeis.org

1, 1, 3, 5, 13, 24, 59, 115, 273, 552, 1278, 2655, 6031, 12795, 28632, 61775, 136572, 298764, 653948, 1447225, 3141427, 7020833, 15132512, 34106865, 73069892, 165903082, 353576829, 807957495, 1714132308, 3939206346
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k = n then 1;
       elif type(n,'odd') and k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq( add(T(n,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 31 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[n,k], {k,0,Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 31 2019