cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026773 a(n) = T(2n-1,n-1), T given by A026769. Also T(2n+1,n+1), T given by A026780.

Original entry on oeis.org

1, 4, 17, 76, 352, 1674, 8129, 40156, 201236, 1020922, 5234660, 27089726, 141335846, 742712598, 3927908193, 20891799036, 111688381228, 599841215226, 3234957053984, 17512055200470, 95125188934942, 518340392855286, 2832580291316092, 15520177744727766
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> Binomial(n+1,k)*Binomial(n+k+1, n+1)/(k+1) )); # G. C. Greubel, Nov 01 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-4*x) - Sqrt(1-6*x+x^2))/(2*x) -1/2 )); // G. C. Greubel, Nov 01 2019
    
  • Maple
    seq(coeff(series((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
  • Mathematica
    Rest@CoefficientList[Series[(Sqrt[1-4*x] - Sqrt[1-6*x+x^2])/(2*x) -1/2, {x,0,30}], x] (* G. C. Greubel, Nov 01 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2) \\ G. C. Greubel, Nov 01 2019
    
  • Sage
    def A026773_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2).list()
    a=A026773_list(30); a[1:] # G. C. Greubel, Nov 01 2019
    

Formula

From Vladeta Jovovic, Nov 23 2003: (Start)
a(n) = A006318(n) - A000108(n).
G.f.: (sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2. (End)
From Paul Barry, May 19 2005: (Start)
a(n) = Sum_{k=0..n} C(n+k+1, n+1)*C(n+1, k)/(k+1).
a(n) = Sum_{k=0..n+1} C(n+2, k)*C(n+k, n+1)/(n+2). (End)
D-finite with recurrence n*(n+1)*a(n) -n*(11*n-7)*a(n-1) +(37*n^2-95*n+54)*a(n-2) +(-49*n^2+269*n-354)*a(n-3) +6*(9*n^2-71*n+138)*a(n-4) -4*(2*n-9)*(n-5)*a(n-5)=0. - R. J. Mathar, Aug 05 2021