cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026787 a(n) = Sum_{k=0..n} T(n,k), T given by A026780.

Original entry on oeis.org

1, 2, 5, 11, 26, 58, 136, 306, 717, 1625, 3813, 8697, 20451, 46909, 110563, 254855, 602042, 1393746, 3299304, 7666786, 18182976, 42391546, 100704606, 235452416, 560147414, 1312916040, 3127406812, 7346213746, 17518138314, 41228281888, 98408997716, 231990850378, 554207752781, 1308436686305, 3128033585157
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
        if n<0 then 0;
        elif k=0 or k =n then 1;
        elif k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        fi ;
    end proc:
    seq( add(T(n,k), k=0..n), n=0..30); # G. C. Greubel, Nov 02 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
    Table[Sum[T[n, k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Nov 02 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 02 2019

Formula

O.g.f.: F(x^2)*(1/(1-x*S(x^2))+C(x^2)*x/(1-x*C(x^2))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108, S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318, and F(x)=S(x)/(1-x*C(x)*S(x)) is o.g.f. for A026781. - Max Alekseyev, Jan 13 2015
C(x^2)/(1-x*C(x^2)) above is the o.g.f. for A001405. 1/(1-x*S(x^2)) above is the o.g.f for A026003 starting with an additional 1: 1,1,1,3,5,13,25,... - R. J. Mathar, Feb 10 2022

Extensions

More terms from Max Alekseyev, Jan 13 2015