cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026801 Number of partitions of n in which the least part is 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 21, 23, 27, 30, 36, 39, 46, 51, 60, 66, 77, 85, 99, 110, 126, 140, 162, 179, 205, 228, 260, 289, 329, 365, 415, 461, 521, 579, 655, 726, 818, 909, 1022, 1134, 1273, 1411
Offset: 1

Views

Author

Keywords

Crossrefs

Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), this sequence (g=8), A026802 (g=9), A026803 (g=10).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); [0,0,0,0,0,0,0] cat Coefficients(R!( x^8/(&*[1-x^(m+8): m in [0..80]]) )); // G. C. Greubel, Nov 03 2019
    
  • Maple
    seq(coeff(series(x^8/mul(1-x^(m+8), m = 0..80), x, n+1), x, n), n = 1..70); # G. C. Greubel, Nov 03 2019
  • Mathematica
    Rest@CoefficientList[Series[x^8/QPochhammer[x^8, x], {x, 0, 75}], x] (* G. C. Greubel, Nov 03 2019 *)
  • PARI
    my(x='x+O('x^70)); concat(vector(7), Vec(x^8/prod(m=0,80, 1-x^(m+8)))) \\ G. C. Greubel, Nov 03 2019
    
  • Sage
    def A026801_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^8/product((1-x^(m+8)) for m in (0..80)) ).list()
    a=A026801_list(71); a[1:] # G. C. Greubel, Nov 03 2019

Formula

G.f.: x^8 * Product_{m>=8} 1/(1-x^m).
a(n+8) = p(n) -p(n-1) -p(n-2) +p(n-5) +p(n-7) +p(n-8) -p(n-10) -p(n-11) -2*p(n-12) +2*p(n-16) +p(n-17) +p(n-18) -p(n-20) -p(n-21) -p(n-23) +p(n-26) +p(n-27) -p(n-28) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*Pi^7 / (18*sqrt(2)*n^(9/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(8*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001