A026802 Number of partitions of n in which the least part is 9.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 24, 26, 30, 34, 39, 43, 50, 55, 63, 71, 80, 89, 102, 113, 128, 143, 161, 179, 203, 225, 253, 282, 316, 351, 395, 437, 489, 544, 607, 673, 752, 832, 927, 1028, 1143
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth exactly g
Crossrefs
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), this sequence (g=9), A026803 (g=10).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 80); [0,0,0,0,0,0,0,0] cat Coefficients(R!( x^9/(&*[1-x^(m+9): m in [0..85]]) )); // G. C. Greubel, Nov 03 2019 -
Maple
seq(coeff(series(x^9/mul(1-x^(m+9), m = 0..85), x, n+1), x, n), n = 1..80); # G. C. Greubel, Nov 03 2019
-
Mathematica
Table[Count[IntegerPartitions[n],?(Min[#]==9&)],{n,80}] (* _Harvey P. Dale, May 09 2013 *) Rest@CoefficientList[Series[x^9/QPochhammer[x^9, x], {x,0,80}], x] (* G. C. Greubel, Nov 03 2019 *)
-
PARI
my(x='x+O('x^70)); concat(vector(8), Vec(x^9/prod(m=0,85, 1-x^(m+9)))) \\ G. C. Greubel, Nov 03 2019
-
Sage
def A026802_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^9/product((1-x^(m+9)) for m in (0..85)) ).list() a=A026802_list(81); a[1:] # G. C. Greubel, Nov 03 2019
Formula
G.f.: x^9 * Product_{m>=9} 1/(1-x^m).
a(n+9) = p(n) -p(n-1) -p(n-2) +p(n-5) +p(n-7) +p(n-9) -p(n-11) -2*p(n-12) -p(n-13) -p(n-15) +p(n-16) +p(n-17) +2*p(n-18) +p(n-19) +p(n-20) -p(n-21) -p(n-23) -2*p(n-24) -p(n-25) +p(n-27) +p(n-29) +p(n-31) -p(n-34) -p(n-35) +p(n-36) where p(n)=A000041(n). - Shanzhen Gao, Oct 28 2010
a(n) ~ exp(Pi*sqrt(2*n/3)) * 70*Pi^8 / (9*sqrt(3)*n^5). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(9*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020
Extensions
More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001