cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026804 Number of partitions of n in which the least part is odd.

Original entry on oeis.org

1, 1, 3, 3, 6, 8, 13, 16, 25, 33, 47, 61, 84, 109, 148, 189, 249, 319, 413, 522, 670, 842, 1066, 1330, 1668, 2068, 2574, 3171, 3915, 4800, 5888, 7175, 8753, 10617, 12879, 15552, 18772, 22570, 27125, 32480, 38867, 46372, 55275, 65707, 78047, 92470, 109456
Offset: 1

Views

Author

Keywords

Comments

Also number of partitions of n in which the largest part occurs an odd number of times. Example: a(5)=6 because we have [5],[4,1],[3,2],[3,1,1],[2,1,1,1] and [1,1,1,1,1] ([2,2,1] does not qualify). - Emeric Deutsch, Apr 04 2006

Examples

			a(5)=6 because we have [5],[4,1],[3,1,1],[2,2,1],[2,1,1,1] and [1,1,1,1,1] ([3,2] does not qualify).
		

Crossrefs

Cf. A046746.

Programs

  • Maple
    g:=sum(x^(2*k-1)/product(1-x^j,j=2*k-1..50),k=1..50): gser:=series(g,x=0,45): seq(coeff(gser,x,n),n=1..43); # Emeric Deutsch, Apr 04 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n<1 or i<1, 0, b(n, i-1)+
          `if`(n=i, irem(n, 2), 0)+`if`(i>n, 0, b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 26 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, b[n, i - 1] + If[n == i, Mod[n, 2], 0] + If[i > n, 0, b[n - i, i]]]; a[n_] :=  b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
  • PARI
    b(n, i) = if(n<1 || i<1, 0, b(n, i - 1) + if(n==i, n%2 , 0) + if(i>n, 0, b(n - i, i)));
    a(n) = b(n, n); \\ Indranil Ghosh, Jun 22 2017, after Maple code by Alois P. Heinz

Formula

G.f.: Sum_{k>=1}((-1)^(k+1)*(-1+1/Product_{i>=k} (1-x^i))). a(n) = Sum_{k=1..n}(-1)^(k+1)*A026807(n, k). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{j>=1}(x^j/(1+x^j)/Product_{i=1..j}(1-x^i)). - Vladeta Jovovic, Aug 11 2004
G.f.: Sum_{k>=1}(x^(2k-1)/Product_{j>=2k-1}(1-x^j)). - Emeric Deutsch, Apr 04 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6))) / sqrt(n) + (25/16 + 2929*Pi^2/6912)/n). - Vaclav Kotesovec, Jul 06 2019, extended Nov 02 2019