cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026805 Number of partitions of n in which the least part is even.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 2, 6, 5, 9, 9, 16, 17, 26, 28, 42, 48, 66, 77, 105, 122, 160, 189, 245, 290, 368, 436, 547, 650, 804, 954, 1174, 1390, 1693, 2004, 2425, 2865, 3445, 4060, 4858, 5716, 6802, 7986, 9468, 11087, 13088, 15298, 17995, 20987, 24604, 28631, 33464
Offset: 1

Views

Author

Keywords

Comments

Also number of partitions of n in which the largest part occurs an even number of times. Example: a(6)=3 because we have [3,3],[2,2,1,1] and [1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006

Examples

			a(6)=3 because we have [6],[4,2] and [2,2,2].
		

Programs

  • Maple
    g:=sum(x^(2*k)/(1-x^(2*k))/product(1-x^j,j=1..k-1),k=1..40): gser:=series(g,x=0,52): seq(coeff(gser,x,n),n=1..49); # Emeric Deutsch, Apr 04 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n<1 or i<1, 0, b(n, i-1)+
          `if`(n=i, 1-irem(n, 2), 0)+`if`(i>n, 0, b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jul 26 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n<1 || i<1, 0, b[n, i-1] + If[n==i, 1-Mod[n, 2], 0] + If[i>n, 0, b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)

Formula

From Vladeta Jovovic, Aug 26 2003: (Start)
G.f.: Sum_{k>=2} ((-1)^k*(-1+1/Product_{i>=k} (1-x^i))).
a(n) = Sum_{k=2..n} (-1)^k*A026807(n, k) = A000041(n)-A026804(n). (End)
From Emeric Deutsch, Apr 04 2006: (Start)
G.f.: Sum_{k>=1}(x^(2k)/Product_{j>=2k}(1-x^j)).
G.f.: Sum_{k>=1}(x^(2k)/((1-x^(2k))*Product_{j=1..k-1}(1-x^j))). (End)
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 61*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Jul 06 2019, extended Nov 02 2019