A026805 Number of partitions of n in which the least part is even.
0, 1, 0, 2, 1, 3, 2, 6, 5, 9, 9, 16, 17, 26, 28, 42, 48, 66, 77, 105, 122, 160, 189, 245, 290, 368, 436, 547, 650, 804, 954, 1174, 1390, 1693, 2004, 2425, 2865, 3445, 4060, 4858, 5716, 6802, 7986, 9468, 11087, 13088, 15298, 17995, 20987, 24604, 28631, 33464
Offset: 1
Keywords
Examples
a(6)=3 because we have [6],[4,2] and [2,2,2].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Programs
-
Maple
g:=sum(x^(2*k)/(1-x^(2*k))/product(1-x^j,j=1..k-1),k=1..40): gser:=series(g,x=0,52): seq(coeff(gser,x,n),n=1..49); # Emeric Deutsch, Apr 04 2006 # second Maple program: b:= proc(n, i) option remember; `if`(n<1 or i<1, 0, b(n, i-1)+ `if`(n=i, 1-irem(n, 2), 0)+`if`(i>n, 0, b(n-i, i))) end: a:= n-> b(n$2): seq(a(n), n=1..60); # Alois P. Heinz, Jul 26 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n<1 || i<1, 0, b[n, i-1] + If[n==i, 1-Mod[n, 2], 0] + If[i>n, 0, b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)
Formula
From Vladeta Jovovic, Aug 26 2003: (Start)
G.f.: Sum_{k>=2} ((-1)^k*(-1+1/Product_{i>=k} (1-x^i))).
From Emeric Deutsch, Apr 04 2006: (Start)
G.f.: Sum_{k>=1}(x^(2k)/Product_{j>=2k}(1-x^j)).
G.f.: Sum_{k>=1}(x^(2k)/((1-x^(2k))*Product_{j=1..k-1}(1-x^j))). (End)
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 61*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Jul 06 2019, extended Nov 02 2019
Comments