A026806 a(n) = number of numbers k such that only one partition of n has least part k.
1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14, 15, 15, 15, 15
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1).
Crossrefs
Cf. A008615.
Programs
-
GAP
List([1..90], n-> 1+Int(n/2)-Int(n/3) ); # G. C. Greubel, Nov 09 2019
-
Magma
[1+Floor(n/2)-Floor(n/3): n in [1..90]]; // G. C. Greubel, Nov 09 2019
-
Maple
seq(1+floor(n/2)-floor(n/3), n = 0..90); # G. C. Greubel, Nov 09 2019
-
Mathematica
Rest[CoefficientList[Series[x(1+2x-x^3-x^4)/((1-x^2)(1-x^3)), {x,0,90}], x]] (* Harvey P. Dale, Apr 22 2011 *) Table[1 + Floor[n/2] - Floor[n/3], {n, 90}] (* G. C. Greubel, Nov 09 2019 *)
-
PARI
a(n)=if(n<1,0,1+(n\2)-(n\3))
-
Sage
[1+floor(n/2)-floor(n/3) for n in (1..40)] # G. C. Greubel, Nov 09 2019