cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026831 Number of partitions of n into distinct parts, the least being 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 27, 30, 33, 36, 40, 44, 48, 53, 59, 64, 71, 78, 86, 94, 104, 113, 125, 136, 149, 163, 179, 194, 213, 232, 254, 276, 302
Offset: 0

Views

Author

Keywords

Examples

			Say n = 11. There is no way to partition 11 into n distinct parts if one of the least parts is 10 since 11 = 10 + x where x >= 10 has no solutions. Hence a(11) = 0.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`((i-10)*(i+11)/2 `if`(n<10, 0, b(n-10$2)):
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-10)*(i+11)/2 < n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n<10, 0, b[n-10, n-10]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *)
    Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 10], {n, 66}]] (* Robert Price, Jun 13 2020 *)

Formula

a(n) = A096740(n-10), n>10. - R. J. Mathar, Jul 31 2008
G.f.: x^10*Product_{j>=11} (1+x^j). - R. J. Mathar, Jul 31 2008
G.f.: Sum_{k>=1} x^(k*(k + 19)/2) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020