cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026833 Number of partitions of n into distinct parts, the least being even.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 1, 2, 3, 4, 4, 5, 6, 8, 9, 11, 14, 16, 18, 22, 26, 31, 36, 42, 49, 57, 66, 76, 88, 102, 116, 134, 154, 176, 201, 229, 260, 296, 336, 381, 432, 488, 550, 622, 700, 788, 886, 994, 1115, 1250, 1399, 1564, 1748, 1952, 2176, 2426, 2701, 3004
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n such that if k is the largest part, then k occurs an even number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(10)=4 because we have [3,3,2,1,1], [2,2,2,2,1,1], [2,2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 30 2006

Examples

			a(10)=4 because we have [10], [8,2], [6,4] and [5,3,2].
		

Crossrefs

Cf. A026832.

Programs

  • Maple
    g:=sum(x^(2*k)*product(1+x^j, j=2*k+1..60), k=1..60): gser:=series(g, x=0, 58): seq(coeff(gser, x, n), n=0..55); # Emeric Deutsch, Mar 30 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2-1 b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 01 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i+1)/2-1 < n, 0, b[n, i-1] + If[i == n && EvenQ[i], 1, 0]+If[i < n, b[n-i, Min[n-i, i-1]], 0]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 16 2025, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>=2} ((-1)^k*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{k>=1} x^(2k)*Product_{j>=2k+1} (1+x^j).
G.f.: Sum_{k>=1} x^(k*(k+3)/2)/((1+x^k)*Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019

Extensions

a(0)=0 prepended by Alois P. Heinz, Feb 01 2019