cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026835 Triangular array read by rows: T(n,k) = number of partitions of n into distinct parts in which every part is >=k, for k=1,2,...,n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 12, 7, 4, 3, 2, 1, 1, 1, 1, 1, 1, 15, 8, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 18, 10, 6, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 22, 12, 7, 4, 3, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

T(n,1)=A000009(n), T(n,2)=A025147(n) for n>1, T(n,3)=A025148(n) for n>2, T(n,4)=A025149(n) for n>3.
A219922(n) = smallest number of row containing n. - Reinhard Zumkeller, Dec 01 2012

Examples

			From _Michael De Vlieger_, Aug 03 2020: (Start)
Table begins:
   1
   1   1
   2   1   1
   2   1   1   1
   3   2   1   1   1
   4   2   1   1   1   1
   5   3   2   1   1   1   1
   6   3   2   1   1   1   1   1
   8   5   3   2   1   1   1   1   1
  10   5   3   2   1   1   1   1   1   1
  12   7   4   3   2   1   1   1   1   1   1
  15   8   5   3   2   1   1   1   1   1   1   1
  ... (End)
		

Crossrefs

Programs

  • Haskell
    import Data.List (tails)
    a026835 n k = a026835_tabl !! (n-1) !! (k-1)
    a026835_row n = a026835_tabl !! (n-1)
    a026835_tabl = map
       (\row -> map (p $ last row) $ init $ tails row) a002260_tabl
       where p 0      _ = 1
             p _     [] = 0
             p m (k:ks) = if m < k then 0 else p (m - k) ks + p m ks
    -- Reinhard Zumkeller, Dec 01 2012
  • Mathematica
    Nest[Function[{T, n, r}, Append[T, Table[1 + Total[T[[##]] & @@@ Select[r, #[[-1]] > k + 1 &]], {k, 0, n}]]] @@ {#1, #2, Transpose[1 + {#2 - #3, #3}]} & @@ {#1, #2, Range[Ceiling[#2/2] - 1]} & @@ {#, Length@ #} &, {{1}}, 12] // Flatten (* Michael De Vlieger, Aug 03 2020 *)

Formula

G.f.: Sum_{k>=1} (y^k*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 25 2003
T(n, k) = 1 + Sum(T(i, j): i>=j>k and i+j=n+1). - Reinhard Zumkeller, Jan 01 2003
T(n, k) > 1 iff 2*k < n. - Reinhard Zumkeller, Jan 01 2003