A026835 Triangular array read by rows: T(n,k) = number of partitions of n into distinct parts in which every part is >=k, for k=1,2,...,n.
1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 8, 5, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 1, 1, 1, 1, 1, 1, 12, 7, 4, 3, 2, 1, 1, 1, 1, 1, 1, 15, 8, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 18, 10, 6, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 22, 12, 7, 4, 3, 2, 1, 1
Offset: 1
Examples
From _Michael De Vlieger_, Aug 03 2020: (Start) Table begins: 1 1 1 2 1 1 2 1 1 1 3 2 1 1 1 4 2 1 1 1 1 5 3 2 1 1 1 1 6 3 2 1 1 1 1 1 8 5 3 2 1 1 1 1 1 10 5 3 2 1 1 1 1 1 1 12 7 4 3 2 1 1 1 1 1 1 15 8 5 3 2 1 1 1 1 1 1 1 ... (End)
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
import Data.List (tails) a026835 n k = a026835_tabl !! (n-1) !! (k-1) a026835_row n = a026835_tabl !! (n-1) a026835_tabl = map (\row -> map (p $ last row) $ init $ tails row) a002260_tabl where p 0 _ = 1 p _ [] = 0 p m (k:ks) = if m < k then 0 else p (m - k) ks + p m ks -- Reinhard Zumkeller, Dec 01 2012
-
Mathematica
Nest[Function[{T, n, r}, Append[T, Table[1 + Total[T[[##]] & @@@ Select[r, #[[-1]] > k + 1 &]], {k, 0, n}]]] @@ {#1, #2, Transpose[1 + {#2 - #3, #3}]} & @@ {#1, #2, Range[Ceiling[#2/2] - 1]} & @@ {#, Length@ #} &, {{1}}, 12] // Flatten (* Michael De Vlieger, Aug 03 2020 *)
Formula
G.f.: Sum_{k>=1} (y^k*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 25 2003
T(n, k) = 1 + Sum(T(i, j): i>=j>k and i+j=n+1). - Reinhard Zumkeller, Jan 01 2003
T(n, k) > 1 iff 2*k < n. - Reinhard Zumkeller, Jan 01 2003
Comments