cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026854 a(n) = T(2n+1,n+1), T given by A026736.

Original entry on oeis.org

1, 3, 10, 36, 136, 530, 2109, 8515, 34739, 142817, 590537, 2452639, 10221505, 42714623, 178888442, 750500716, 3153137436, 13263180550, 55844218906, 235323138044, 992316962382, 4186870456952, 17674378119680, 74641954142026
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^2/(4*x^2*(1-x/Sqrt(1-4*x))) )); // G. C. Greubel, Jul 21 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x])^2/(4x^2(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^2/(4*x^2*(1-x/sqrt(1-4*x))) ) \\ G. C. Greubel, Jul 21 2019
    
  • Sage
    ((1-sqrt(1-4*x))^2/(4*x^2*(1-x/sqrt(1-4*x)))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 21 2019

Formula

G.f.: C(x)^2/(1 - x/sqrt(1-4*x)) where C(x) = g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^2 * (2 + sqrt(5))^(n+1) / (4*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019