cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026907 Triangular array T read by rows (9-diamondization of Pascal's triangle). Step 1: t(n,k) = sum of 9 entries in diamond-shaped subarray of Pascal's triangle having vertices C(n,k), C(n+4,k+2), C(n+2,k), C(n+2,k+2). Step 2: T(n,k) = t(n,k) - t(0,0) + 1.

Original entry on oeis.org

1, 13, 13, 28, 44, 28, 46, 90, 90, 46, 67, 154, 198, 154, 67, 91, 239, 370, 370, 239, 91, 118, 348, 627, 758, 627, 348, 118, 148, 484, 993, 1403, 1403, 993, 484, 148, 181, 650, 1495, 2414, 2824, 2414, 1495, 650, 181, 217, 849, 2163, 3927, 5256, 5256, 3927, 2163, 849, 217
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
   1;
  13,  13;
  28,  44,  28;
  46,  90,  90,  46;
  67, 154, 198, 154,  67;
  91, 239, 370, 370, 239,  91;
  ...
		

Crossrefs

Sums: A026915 (row), A026916, A026917, A026918 (diagonal).

Programs

  • Magma
    A026907:= func< n,k | Binomial(n,k) + 3*Binomial(n+4,k+2) - 18 >;
    [A026907(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 21 2025
    
  • Mathematica
    t[n_, k_]:=Binomial[n + 4, k + 2 ] + Binomial[n + 3, k + 1] + Binomial[n + 3, k + 2] + Binomial[n + 2, k] + Binomial[n + 2, k + 1] + Binomial[n + 2, k + 2] + Binomial[n + 1, k] + Binomial[n + 1, k + 1] + Binomial[n, k] ; T[n_, k_]:=t[n,k] - t[0, 0] + 1; Flatten[Table[T[n, k], {n, 0, 9},{k, 0, n}]] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    alias(C, binomial);
    t(n,k) = C(n+4,k+2) + C(n+3,k+1) + C(n+3,k+2) + C(n+2,k) + C(n+2,k+1) + C(n+2,k+2) + C(n+1,k) + C(n+1,k+1) + C(n,k);
    T(n,k) = t(n,k)-t(0,0)+1;
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print());
    \\ Michel Marcus, Mar 13 2017
    
  • SageMath
    def A026907(n,k): return binomial(n,k) +3*binomial(n+4,k+2) -18
    print(flatten([[A026907(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Aug 21 2025

Formula

From G. C. Greubel, Aug 21 2025: (Start)
T(n, k) = binomial(n,k) + 3*binomial(n+4, k+2) - 18.
Sum_{k=0..n} (-1)^k*T(n, k) = 6*(1+(-1)^n)* floor((n+1)/2) + [n=0]. (End)