cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026945 A bisection of the Motzkin numbers A001006.

Original entry on oeis.org

1, 2, 9, 51, 323, 2188, 15511, 113634, 853467, 6536382, 50852019, 400763223, 3192727797, 25669818476, 208023278209, 1697385471211, 13933569346707, 114988706524270, 953467954114363, 7939655757745265, 66368199913921497
Offset: 0

Views

Author

Keywords

Comments

a(n) is the sum of the squares of numbers in row n of array T given by A026300.
Number of closed walks of length 2n on the one-way infinite ladder graph starting from (and ending at) a node of degree 2. - Mitch Harris, Mar 06 2004
a(n) is the number of ways to connect 2n points labeled 1,2,...,2n in a line with 0 or more noncrossing arcs. For example, with arcs separated by dashes, a(2)=9 counts {} (no arcs), 12, 13, 14, 23, 24, 34, 12-34, 14-23. - David Callan, Sep 18 2007

Crossrefs

Programs

  • Maple
    G:=(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2): GG:=series(G,x=0,60): 1, seq(coeff(GG,x^(2*n)),n=1..23);
    a := n -> hypergeom([1/2-n, -n], [2], 4);
    seq(simplify(a(n)), n=0..29); # Peter Luschny, May 15 2016
  • Mathematica
    Table[SeriesCoefficient[(1-x-Sqrt[1-2*x-3*x^2])/(2*x^2),{x,0,2*n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
    Table[MotzkinNumber[2n], {n, 0, 20}] (* Jean-François Alcover, Oct 27 2021 *)
  • PARI
    C(n)=binomial(2*n,n)/(n+1);
    a(n)=sum(k=0,n, binomial(2*n,2*k)*C(k));
    \\ Joerg Arndt, May 04 2013
    
  • PARI
    {a(n)=polcoeff(1/x*serreverse( x * (1-x) * (1-2*x)^2 /(1 - 3*x + 3*x^2 +x^2*O(x^n)) ),n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Oct 03 2014

Formula

a(n) = A005043(2n) + A005043(2n+1). - Ralf Stephan, Feb 06 2004
a(n) = Sum_{k=0..n} binomial(2n,2k)*C(k), C(n)=A000108(n); - Paul Barry, Jul 11 2008
a(n) = (2/Pi)*integral(x=-1..1, (1+2*x)^(2*n)*sqrt(1-x^2)). - Peter Luschny, Sep 11 2011
D-finite with recurrence: (n+1)*(2*n+1)*a(n) = (14*n^2+9*n-2)*a(n-1) + 3*(14*n^2-51*n+43)*a(n-2) - 27*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3^(2*n+3/2)/(2^(5/2)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: (1/x) * Series_Reversion( x * (1-x) * (1-2*x)^2 / (1 - 3*x + 3*x^2) ). - Paul D. Hanna, Oct 03 2014
From Peter Luschny, May 15 2016: (Start)
a(n) = ((9-9*n)*(2*n-3)*(4*n+1)*a(n-2)+((8*n-2))*(10*n^2-5*n-3)*a(n-1))/((1+2*n)*(4*n-3)*(n+1)) for n>=2.
a(n) = hypergeom([1/2-n, -n], [2], 4). (End)

Extensions

Entry revised by N. J. A. Sloane, Nov 16 2004