A026945 A bisection of the Motzkin numbers A001006.
1, 2, 9, 51, 323, 2188, 15511, 113634, 853467, 6536382, 50852019, 400763223, 3192727797, 25669818476, 208023278209, 1697385471211, 13933569346707, 114988706524270, 953467954114363, 7939655757745265, 66368199913921497
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Igor Dolinka, James East, Athanasios Evangelou, Desmond FitzGerald, Nicholas Ham, James Hyde, Nicholas Loughlin, and James Mitchell, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv preprint arXiv:1507.04838 [math.CO], 2015-2018.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Quasipartition and planar quasipartition algebras, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 50. See p. 7.
- Willow Stewart and Daniel Tubbenhauer, Representation gaps of rigid planar diagram monoids, arXiv:2505.05846 [math.RT], 2025. See references.
- Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
Programs
-
Maple
G:=(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2): GG:=series(G,x=0,60): 1, seq(coeff(GG,x^(2*n)),n=1..23); a := n -> hypergeom([1/2-n, -n], [2], 4); seq(simplify(a(n)), n=0..29); # Peter Luschny, May 15 2016
-
Mathematica
Table[SeriesCoefficient[(1-x-Sqrt[1-2*x-3*x^2])/(2*x^2),{x,0,2*n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *) MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]]; Table[MotzkinNumber[2n], {n, 0, 20}] (* Jean-François Alcover, Oct 27 2021 *)
-
PARI
C(n)=binomial(2*n,n)/(n+1); a(n)=sum(k=0,n, binomial(2*n,2*k)*C(k)); \\ Joerg Arndt, May 04 2013
-
PARI
{a(n)=polcoeff(1/x*serreverse( x * (1-x) * (1-2*x)^2 /(1 - 3*x + 3*x^2 +x^2*O(x^n)) ),n)} for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Oct 03 2014
Formula
a(n) = Sum_{k=0..n} binomial(2n,2k)*C(k), C(n)=A000108(n); - Paul Barry, Jul 11 2008
a(n) = (2/Pi)*integral(x=-1..1, (1+2*x)^(2*n)*sqrt(1-x^2)). - Peter Luschny, Sep 11 2011
D-finite with recurrence: (n+1)*(2*n+1)*a(n) = (14*n^2+9*n-2)*a(n-1) + 3*(14*n^2-51*n+43)*a(n-2) - 27*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3^(2*n+3/2)/(2^(5/2)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: (1/x) * Series_Reversion( x * (1-x) * (1-2*x)^2 / (1 - 3*x + 3*x^2) ). - Paul D. Hanna, Oct 03 2014
From Peter Luschny, May 15 2016: (Start)
a(n) = ((9-9*n)*(2*n-3)*(4*n+1)*a(n-2)+((8*n-2))*(10*n^2-5*n-3)*a(n-1))/((1+2*n)*(4*n-3)*(n+1)) for n>=2.
a(n) = hypergeom([1/2-n, -n], [2], 4). (End)
Extensions
Entry revised by N. J. A. Sloane, Nov 16 2004
Comments