cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026956 Self-convolution of array T given by A026615.

Original entry on oeis.org

1, 2, 11, 52, 200, 742, 2752, 10278, 38670, 146426, 557408, 2131318, 8179646, 31491202, 121568150, 470404274, 1823968074, 7085220834, 27567196704, 107414120214, 419080195374, 1636990646274, 6401210885934, 25055584929954, 98160790785714, 384885441746202, 1510279309724502
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select n+1 else Catalan(n-2)*(49*n^2-105*n+48)/n - 6: n in [0..40]]; // G. C. Greubel, Jun 17 2024
    
  • Mathematica
    Table[If[n==0, 1, CatalanNumber[n-2]*(49*n^2-105*n+48)/n -6], {n,0,40}] (* G. C. Greubel, Jun 17 2024 *)
  • SageMath
    [1,2]+[catalan_number(n-2)*(49*n^2-105*n+48)/n -6 for n in range(2,41)] # G. C. Greubel, Jun 17 2024

Formula

From G. C. Greubel, Jun 17 2024: (Start)
a(n) = Sum_{k=0..n} A026615(n, k) * A026615(n, n-k).
a(n) = A000108(n-2)*(49*n^2 - 105*n + 48)/n - 6, for n >= 1, with a(0) = 1.
G.f.: (4 - 8*x + 5*x^2 - x^3 - (3 - x + 4*x^2)*sqrt(1-4*x))/((1-x)*sqrt(1-4*x)).
E.g.f.: (1/6)*( 18 + 24*x - 36*exp(x) + 4*exp(2*x)*(6 - 6*x + x^2) * BesselI(0, 2*x) + x*exp(2*x)*(23 - 4*x)*BesselI(1, 2*x) ). (End)

Extensions

More terms from Sean A. Irvine, Oct 20 2019