A026957 a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026615.
1, 6, 35, 154, 613, 2362, 9028, 34510, 132241, 508210, 1958460, 7565906, 29292820, 113633930, 441579702, 1718642278, 6698377449, 26139863330, 102125977396, 399415127682, 1563614796608, 6126581578954, 24024810462810, 94281930087290, 370254213115948, 1454967778894282
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[1] cat [(n-1)*Binomial(2*n,n-1)*(49*n^3 -105*n^2 +62*n -24)/( 24*Binomial(2*n,4)) -2*(2*n-1): n in [2..40]]; // G. C. Greubel, Jun 17 2024
-
Mathematica
Table[If[n==1, 1, (n-1)*Binomial[2*n,n-1]*(49*n^3 -105*n^2 +62*n -24 )/(24*Binomial[2*n,4]) - 2*(2*n-1)], {n,40}] (* G. C. Greubel, Jun 17 2024 *)
-
SageMath
[1]+[(n-1)*binomial(2*n,n-1)*(49*n^3-105*n^2+62*n-24 )/( 24*binomial(2*n, 4)) -2*(2*n-1) for n in range(2,41)] # G. C. Greubel, Jun 17 2024
Formula
a(n) = (n-1)*binomial(2*n, n-1)*(49*n^3 - 105*n^2 + 62*n - 24 )/( 24*binomial(2*n, 4)) - 2*(2*n-1), for n >= 2, with a(1) = 1. - G. C. Greubel, Jun 17 2024
Extensions
More terms from Sean A. Irvine, Oct 20 2019