cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026957 a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026615.

Original entry on oeis.org

1, 6, 35, 154, 613, 2362, 9028, 34510, 132241, 508210, 1958460, 7565906, 29292820, 113633930, 441579702, 1718642278, 6698377449, 26139863330, 102125977396, 399415127682, 1563614796608, 6126581578954, 24024810462810, 94281930087290, 370254213115948, 1454967778894282
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(n-1)*Binomial(2*n,n-1)*(49*n^3 -105*n^2 +62*n -24)/( 24*Binomial(2*n,4)) -2*(2*n-1): n in [2..40]]; // G. C. Greubel, Jun 17 2024
    
  • Mathematica
    Table[If[n==1, 1, (n-1)*Binomial[2*n,n-1]*(49*n^3 -105*n^2 +62*n -24 )/(24*Binomial[2*n,4]) - 2*(2*n-1)], {n,40}] (* G. C. Greubel, Jun 17 2024 *)
  • SageMath
    [1]+[(n-1)*binomial(2*n,n-1)*(49*n^3-105*n^2+62*n-24 )/( 24*binomial(2*n, 4)) -2*(2*n-1) for n in range(2,41)] # G. C. Greubel, Jun 17 2024

Formula

a(n) = (n-1)*binomial(2*n, n-1)*(49*n^3 - 105*n^2 + 62*n - 24 )/( 24*binomial(2*n, 4)) - 2*(2*n-1), for n >= 2, with a(1) = 1. - G. C. Greubel, Jun 17 2024

Extensions

More terms from Sean A. Irvine, Oct 20 2019