A026958 a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026615.
1, 10, 69, 340, 1476, 6074, 24419, 97136, 384428, 1517422, 5981070, 23556746, 92743296, 365078146, 1437124303, 5657887016, 22279053380, 87749051950, 345704345066, 1362361338578, 5370436417996, 21176724230654, 83529562154498, 329573910914930, 1300752571946396
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
Magma
[n eq 2 select 1 else Binomial(2*n,n+2)*(49*n^4 -154*n^3 + 209*n^2 -200*n +108)/(24*Binomial(2*n,4)) -2*(n^2-2*n+2): n in [2..40]]; // G. C. Greubel, Jun 17 2024
-
Mathematica
Table[Binomial[2*n,n+2]*(49*n^4 -154*n^3 +209*n^2 -200*n +108)/(24* Binomial[2*n,4]) -2*(n^2-2*n+2) + Boole[n==2], {n,2,40}] (* G. C. Greubel, Jun 17 2024 *)
-
SageMath
[binomial(2*n,n+2)*(49*n^4 -154*n^3 +209*n^2 -200*n +108 )/(24*binomial(2*n,4)) -2*(n^2-2*n+2) +int(n==2) for n in range(2,41)] # G. C. Greubel, Jun 17 2024
Formula
a(n) = binomial(2*n, n+2)*(49*n^4 - 154*n^3 + 209*n^2 - 200*n + 108)/(24*binomial(2*n, 4)) -2*(n^2 - 2*n + 2) + [n=2]. - G. C. Greubel, Jun 17 2024
Extensions
More terms from Sean A. Irvine, Oct 20 2019