A026962 a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026626.
1, 6, 24, 108, 406, 1572, 5961, 22788, 87209, 335010, 1290376, 4983162, 19286891, 74797176, 290586771, 1130716508, 4406049037, 17191077082, 67152699384, 262594530318, 1027851765350, 4026831276662, 15788979175102, 61954847930374, 243278117470476, 955907159445522
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[3*n/2], T[n-1,k-1] +T[n-1,k]]]; (* T = A026626 *) A262962[n_]:=Sum[T[n,k]*T[n,k+1], {k,0,n-1}]; Table[A262962[n], {n,40}] (* G. C. Greubel, Jun 23 2024 *)
-
SageMath
@CachedFunction def T(n, k): # T = A026626 if (k==0 or k==n): return 1 elif (k==1 or k==n-1): return int(3*n//2) else: return T(n-1, k-1) + T(n-1, k) def A262962(n): return sum( T(n,k)*T(n,k+1) for k in range(n)) [A262962(n) for n in range(1,41)] # G. C. Greubel, Jun 23 2024
Extensions
More terms from Sean A. Irvine, Oct 20 2019