cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027001 a(n) = T(2*n, n+2), T given by A026998.

Original entry on oeis.org

1, 26, 174, 743, 2552, 7784, 22193, 60882, 163430, 433495, 1142496, 3001056, 7869649, 20619098, 54001422, 141401879, 370224248, 969294632, 2537687585, 6643800690, 17393752166, 45537499111, 119218794624, 312118940928, 817138091617, 2139295405274
Offset: 2

Views

Author

Keywords

Crossrefs

Bisection of A027964.

Programs

  • Magma
    [3*Fibonacci(2*n+10)-2*Fibonacci(2*n+9)-Fibonacci(2*n+8)-4*n^3-26*n^2-68*n-75: n in [0..30]]; // Vincenzo Librandi, Feb 19 2016
    
  • Mathematica
    LinearRecurrence[{7, -19, 26, -19, 7, -1}, {1, 26, 174, 743, 2552, 7784}, 30] (* Vincenzo Librandi, Feb 19 2016 *)
  • PARI
    Vec(x^2*(1+x)*(1+18*x-7*x^2)/((1-x)^4*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 18 2016
    
  • SageMath
    def A027001(n): return lucas_number2(2*n+5,1,-1) -(4*(n+1)**3 -10*n**2 +7)
    print([A027001(n) for n in range(2,41)]) # G. C. Greubel, Jul 20 2025

Formula

a(n+2) = 3*F(2*n+10) - 2*F(2*n+9) - F(2*n+8) -(4*n^3 +26*n^2 +68*n +75), n >= 0, F(n) = A000045(n). - Ralf Stephan, Feb 07 2004
From Colin Barker, Feb 18 2016: (Start)
a(n) = 2^(-1-n)*( (11-5*sqrt(5))*(3-sqrt(5))^n + (11+5*sqrt(5))*(3+sqrt(5))^n ) - 11 - 12*n - 2*n^2 - 4*n^3.
G.f.: x^2*(1+x)*(1+18*x-7*x^2) / ((1-x)^4*(1-3*x+x^2)). (End)
From G. C. Greubel, Jul 20 2025: (Start)
a(n) = Lucas(2*n+5) - (4*(n+1)^3 - 10*n^2 + 7), n >= 2.
E.g.f.: exp(3*x/2)*(11*cosh(p*x) + 10*p*sinh(p*x)) - (4*x^3 + 14*x^2 + 18*x + 11)*exp(x), where 2*p = sqrt(5). (End)