cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027002 a(n) = T(2*n, n+3), T given by A026998.

Original entry on oeis.org

1, 43, 431, 2482, 10636, 38138, 122069, 362853, 1027843, 2822668, 7601784, 20228876, 53447609, 140633575, 369179479, 967898846, 2535852052, 6641420806, 17390705661, 45533644161, 119213967867, 312112955384, 817130734512, 2139286435768, 5600737350897
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027002 := func< n | Lucas(2*n+7) -(435+433*n+155*n^2+125*n^3-20*n^4+12*n^5)/15 >;
    [A027002(n): n in [3..50]]; // G. C. Greubel, Jun 16 2025
    
  • Maple
    gf:= x^3*(1+34*x+78*x^2-6*x^3-11*x^4) / ((1-x)^6*(1-3*x+x^2)):
    S:= series(gf,x,100):
    seq(coeff(S,x,n),n=3..100); # Robert Israel, Feb 18 2016
  • Mathematica
    LinearRecurrence[{9, -34, 71, -90, 71, -34, 9, -1}, {1, 43, 431, 2482, 10636, 38138, 122069, 362853}, 30] (* Vincenzo Librandi, Feb 19 2016 *)
  • PARI
    Vec(x^3*(1+34*x+78*x^2-6*x^3-11*x^4)/((1-x)^6*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
    
  • SageMath
    def A027002(n): return lucas_number2(2*n+7,1,-1) -(435+433*n+155*n^2+125*n^3 -20*n^4+12*n^5)/15
    print([A027002(n) for n in range(3,51)]) # G. C. Greubel, Jun 16 2025

Formula

G.f.: x^3*(1+34*x+78*x^2-6*x^3-11*x^4) / ((1-x)^6*(1-3*x+x^2)). - Colin Barker, Feb 18 2016
From Robert Israel, Feb 18 2016: (Start)
By definition, a(n) is the coefficient of x^(2*n-6) in the Maclaurin series of (1+2*x)/((1-x-x^2)*(1-x)^6). This can be written explicitly:
a(n) = ((29-13*sqrt(5))/2)*((3-sqrt(5))/2)^n + ((29+13*sqrt(5))/2)*((3+sqrt(5))/2)^n - (4/5)*n^5 + (4/3)*n^4 - (25/3)*n^3 - (31/3)*n^2 - (433/15)*n - 29.
This confirms Colin Barker's g.f. (End)
From G. C. Greubel, Jun 16 2025: (Start)
a(n) = A000032(2*n+7) - (1/15)*(435 + 433*n + 155*n^2 + 125*n^3 - 20*n^4 + 12*n^5).
E.g.f.: exp(3*x/2)*(29*cosh(sqrt(5)*x/2) + 13*sqrt(5)*sinh(sqrt(5)*x/2)) - (1/15)*(435 + 705*x + 570*x^2 + 305*x^3 + 100*x^4 + 12*x^5)*exp(x). (End)