A027005 a(n) = T(2*n+1,n+2), T given by A026998.
1, 19, 101, 370, 1148, 3278, 8967, 23993, 63483, 167040, 438346, 1148844, 3009181, 7879855, 20631713, 54016798, 141420392, 370246298, 969320643, 2537718005, 6643835991, 17393792844, 45537545686, 119218847640, 312119000953, 817138159243, 2139295481117
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,13,-6,1).
Programs
-
Magma
A027005:= func< n | Lucas(2*n+5) -(6*n^2+11*n+11) >; [A027005(n): n in [1..40]]; // G. C. Greubel, Jul 21 2025
-
Mathematica
LinearRecurrence[{6,-13,13,-6,1},{1,19,101,370,1148},30] (* Harvey P. Dale, Aug 19 2020 *)
-
PARI
Vec(x*(1+13*x-2*x^3)/((1-x)^3*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
-
SageMath
def A027005(n): return lucas_number2(2*n+5,1,-1) -(6*n**2 +11*n +11) print([A027005(n) for n in range(1,41)]) # G. C. Greubel, Jul 21 2025
Formula
From Colin Barker, Feb 19 2016: (Start)
a(n) = 2^(-1-n)*((25+11*sqrt(5))*(3+sqrt(5))^n - (25-11*sqrt(5))*(3-sqrt(5))^n )/sqrt(5) + 7*(1+n) - 6*(n+1)*(n+2) + 7*(n+1) - 6.
a(n) = 6*a(n-1) - 13*a(n-2) + 13*a(n-3) - 6*a(n-4) + a(n-5) for n>5.
G.f.: x*(1+13*x-2*x^3) / ((1-x)^3*(1-3*x+x^2)). (End)
From G. C. Greubel, Jul 21 2025: (Start)
a(n) = Lucas(2*n+5) - (6*n^2 + 11*n + 11).
E.g.f.: exp(3*x/2)*(11*cosh(p*x) + 10*p*sinh(p*x)) - (11 + 17*x + 6*x^2)*exp(x), where 2*p = sqrt(5). (End)
Comments