cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027005 a(n) = T(2*n+1,n+2), T given by A026998.

Original entry on oeis.org

1, 19, 101, 370, 1148, 3278, 8967, 23993, 63483, 167040, 438346, 1148844, 3009181, 7879855, 20631713, 54016798, 141420392, 370246298, 969320643, 2537718005, 6643835991, 17393792844, 45537545686, 119218847640, 312119000953, 817138159243, 2139295481117
Offset: 1

Views

Author

Keywords

Comments

Bisection of A027963.

Crossrefs

Programs

  • Magma
    A027005:= func< n | Lucas(2*n+5) -(6*n^2+11*n+11) >;
    [A027005(n): n in [1..40]]; // G. C. Greubel, Jul 21 2025
    
  • Mathematica
    LinearRecurrence[{6,-13,13,-6,1},{1,19,101,370,1148},30] (* Harvey P. Dale, Aug 19 2020 *)
  • PARI
    Vec(x*(1+13*x-2*x^3)/((1-x)^3*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
    
  • SageMath
    def A027005(n): return lucas_number2(2*n+5,1,-1) -(6*n**2 +11*n +11)
    print([A027005(n) for n in range(1,41)]) # G. C. Greubel, Jul 21 2025

Formula

From Colin Barker, Feb 19 2016: (Start)
a(n) = 2^(-1-n)*((25+11*sqrt(5))*(3+sqrt(5))^n - (25-11*sqrt(5))*(3-sqrt(5))^n )/sqrt(5) + 7*(1+n) - 6*(n+1)*(n+2) + 7*(n+1) - 6.
a(n) = 6*a(n-1) - 13*a(n-2) + 13*a(n-3) - 6*a(n-4) + a(n-5) for n>5.
G.f.: x*(1+13*x-2*x^3) / ((1-x)^3*(1-3*x+x^2)). (End)
From G. C. Greubel, Jul 21 2025: (Start)
a(n) = Lucas(2*n+5) - (6*n^2 + 11*n + 11).
E.g.f.: exp(3*x/2)*(11*cosh(p*x) + 10*p*sinh(p*x)) - (11 + 17*x + 6*x^2)*exp(x), where 2*p = sqrt(5). (End)