A027010 a(n) = Sum_{k=floor((n+1)/2)..n} T(k,n-k); i.e., a(n) is the n-th diagonal sum of left-justified array T given by A026998.
1, 1, 2, 5, 6, 13, 17, 29, 43, 64, 100, 144, 223, 326, 492, 733, 1089, 1634, 2421, 3626, 5389, 8041, 11985, 17847, 26624, 39640, 59112, 88059, 131242, 195592, 291433, 434369, 647218, 964581, 1437374, 2142013, 3192113, 4756821
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,1).
Programs
-
Magma
R
:= PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-x^2+2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)) )); // G. C. Greubel, Jul 11 2025 -
Mathematica
CoefficientList[Series[(1-x^2+2 x^3)/((1-x)(1-2 x^2 -x^3 +x^4)), {x,0,40}], x] (* Vincenzo Librandi, Aug 03 2017 *)
-
SageMath
def A027010_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1-x^2+2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)) ).list() a=A027010_list(40); a[1:] # G. C. Greubel, Jul 11 2025
Formula
G.f.: x*(1 - x^2 + 2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)).
a(n) = 2*b(n+2) + 3*b(n+1) - b(n) - 4*b(n-1) - 2, where b(n) = A122514(n). - G. C. Greubel, Jul 11 2025