cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027010 a(n) = Sum_{k=floor((n+1)/2)..n} T(k,n-k); i.e., a(n) is the n-th diagonal sum of left-justified array T given by A026998.

Original entry on oeis.org

1, 1, 2, 5, 6, 13, 17, 29, 43, 64, 100, 144, 223, 326, 492, 733, 1089, 1634, 2421, 3626, 5389, 8041, 11985, 17847, 26624, 39640, 59112, 88059, 131242, 195592, 291433, 434369, 647218, 964581, 1437374, 2142013, 3192113, 4756821
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:= PowerSeriesRing(Integers(), 40);
    Coefficients(R!( x*(1-x^2+2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)) )); // G. C. Greubel, Jul 11 2025
    
  • Mathematica
    CoefficientList[Series[(1-x^2+2 x^3)/((1-x)(1-2 x^2 -x^3 +x^4)), {x,0,40}], x] (* Vincenzo Librandi, Aug 03 2017 *)
  • SageMath
    def A027010_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x^2+2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)) ).list()
    a=A027010_list(40); a[1:] # G. C. Greubel, Jul 11 2025

Formula

G.f.: x*(1 - x^2 + 2*x^3)/((1-x)*(1-2*x^2-x^3+x^4)).
a(n) = 2*b(n+2) + 3*b(n+1) - b(n) - 4*b(n-1) - 2, where b(n) = A122514(n). - G. C. Greubel, Jul 11 2025