cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027024 a(n) = T(n,n+2), T given by A027023.

Original entry on oeis.org

1, 5, 13, 27, 53, 101, 189, 351, 649, 1197, 2205, 4059, 7469, 13741, 25277, 46495, 85521, 157301, 289325, 532155, 978789, 1800277, 3311229, 6090303, 11201817, 20603357, 37895485, 69700667, 128199517, 235795677, 433695869
Offset: 2

Views

Author

Keywords

Crossrefs

Pairwise sums of A027053.

Programs

  • GAP
    a:=[1,5,13,27];; for n in [5..35] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019
    
  • Maple
    seq(coeff(series(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2..35); # G. C. Greubel, Nov 04 2019
  • Mathematica
    Drop[CoefficientList[Series[x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), {x, 0, 35}], x], 2] (* or *) LinearRecurrence[{2,0,0,-1}, {1,5,13,27}, 35] (* G. C. Greubel, Nov 04 2019 *)
  • PARI
    my(x='x+O('x^35)); Vec(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
    
  • Sage
    def A027024_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) ).list()
    a=A027024_list(35); a[2:] # G. C. Greubel, Nov 04 2019
    

Formula

G.f.: x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)).
a(n) = a(n-1) + a(n-2) + a(n-3) + 8, for n>4. - Greg Dresden, Feb 09 2020
a(n) = A000213(n+2)-4. - R. J. Mathar, Jun 24 2020