A027024 a(n) = T(n,n+2), T given by A027023.
1, 5, 13, 27, 53, 101, 189, 351, 649, 1197, 2205, 4059, 7469, 13741, 25277, 46495, 85521, 157301, 289325, 532155, 978789, 1800277, 3311229, 6090303, 11201817, 20603357, 37895485, 69700667, 128199517, 235795677, 433695869
Offset: 2
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1001
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
Crossrefs
Pairwise sums of A027053.
Programs
-
GAP
a:=[1,5,13,27];; for n in [5..35] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 04 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019 -
Maple
seq(coeff(series(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2..35); # G. C. Greubel, Nov 04 2019
-
Mathematica
Drop[CoefficientList[Series[x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), {x, 0, 35}], x], 2] (* or *) LinearRecurrence[{2,0,0,-1}, {1,5,13,27}, 35] (* G. C. Greubel, Nov 04 2019 *)
-
PARI
my(x='x+O('x^35)); Vec(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
-
Sage
def A027024_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) ).list() a=A027024_list(35); a[2:] # G. C. Greubel, Nov 04 2019
Formula
G.f.: x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)).
a(n) = a(n-1) + a(n-2) + a(n-3) + 8, for n>4. - Greg Dresden, Feb 09 2020
a(n) = A000213(n+2)-4. - R. J. Mathar, Jun 24 2020