A027027 a(n) = T(n, 2n-3), T given by A027023.
1, 3, 9, 27, 77, 215, 597, 1655, 4593, 12775, 35629, 99651, 279501, 786071, 2216437, 6264663, 17746897, 50380895, 143307269, 408388819, 1165819757, 3333448075, 9545909641, 27375525727, 78612676241, 226034151539, 650692800633
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..750
Crossrefs
Cf. A027023.
Programs
-
Maple
T:= proc(n, k) option remember; if k<3 or k=2*n then 1 else add(T(n-1, k-j), j=1..3) fi end: seq(T(n, 2*n-3), n=2..30); # G. C. Greubel, Nov 04 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]; Table[T[n, 2*n-3], {n, 2, 30}] (* G. C. Greubel, Nov 04 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k<3 or k==2*n): return 1 else: return sum(T(n-1, k-j) for j in (1..3)) [T(n, 2*n-3) for n in (2..30)] # G. C. Greubel, Nov 04 2019
Formula
Conjecture: D-finite with recurrence (n+1)*a(n) +(-8*n-1)*a(n-1) +(19*n-14)*a(n-2) +2*(-3*n-1)*a(n-3) +(-21*n+89)*a(n-4) +(8*n-45)*a(n-5) +(n-4)*a(n-6) +6*(n-4)*a(n-7)=0. - R. J. Mathar, Jun 24 2020
a(n) ~ 3^(n + 7/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 08 2023