A027037 Diagonal sum of left-justified array T given by A027023.
1, 1, 2, 3, 3, 6, 7, 11, 16, 21, 33, 48, 65, 101, 146, 203, 311, 450, 635, 963, 1396, 1989, 2993, 4348, 6233, 9329, 13574, 19543, 29135, 42446, 61303, 91123, 132884, 192377, 285309, 416384, 603925, 894069, 1305618, 1896495, 2803611, 4096182, 5957183, 8796287
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
T:= proc(n, k) option remember; if n<0 or k>2*n then 0 elif k<3 or k=2*n then 1 else add(T(n-1, k-j), j=1..3) fi end: seq( add(T(n-k,k), k=0..n), n=0..30); # G. C. Greubel, Nov 05 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0 || k>2*n, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n-k, k], {k, 0, n}], {n,0,30}] (* G. C. Greubel, Nov 05 2019 *)
-
Sage
@CachedFunction def T(n, k): if (n<0 or k>2*n): return 0 elif (k<3 or k==2*n): return 1 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n-k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 05 2019
Formula
a(n) = Sum_{k=0..n} A027023(n-k, k). - Sean A. Irvine, Oct 22 2019
Extensions
More terms from Sean A. Irvine, Oct 21 2019