cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027037 Diagonal sum of left-justified array T given by A027023.

Original entry on oeis.org

1, 1, 2, 3, 3, 6, 7, 11, 16, 21, 33, 48, 65, 101, 146, 203, 311, 450, 635, 963, 1396, 1989, 2993, 4348, 6233, 9329, 13574, 19543, 29135, 42446, 61303, 91123, 132884, 192377, 285309, 416384, 603925, 894069, 1305618, 1896495, 2803611, 4096182, 5957183, 8796287
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if n<0 or k>2*n then 0
        elif k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n-k,k), k=0..n), n=0..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0 || k>2*n, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n-k, k], {k, 0, n}], {n,0,30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0 or k>2*n): return 0
        elif (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n-k, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 05 2019

Formula

a(n) = Sum_{k=0..n} A027023(n-k, k). - Sean A. Irvine, Oct 22 2019

Extensions

More terms from Sean A. Irvine, Oct 21 2019