cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027070 a(n) = diagonal sum of right-justified array T given by A027052.

Original entry on oeis.org

1, 1, 1, 4, 6, 12, 31, 73, 183, 476, 1248, 3322, 8943, 24271, 66355, 182538, 504824, 1402682, 3913585, 10959499, 30792445, 86775340, 245204312, 694603032, 1972115945, 5610955925, 15994866669, 45677496204, 130661330526, 374339736820, 1074025873959, 3085699969569, 8876601230175
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n-k,2*n-3*k), k=0..n), n=0..35); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n-k, 2*n-3*k], {k, 0, n}], {n,0,35}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n-k,2*n-3*k) for k in (0..n)) for n in (0..35)] # G. C. Greubel, Nov 06 2019

Formula

a(n) = Sum_{k=0..n} A027052(n-k, 2*n-3*k). - Sean A. Irvine, Oct 22 2019

Extensions

More terms from Sean A. Irvine, Oct 22 2019