cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027076 a(n) = Sum_{k=0..2n} (k+1) * A027052(n, 2n-k).

Original entry on oeis.org

1, 4, 13, 38, 111, 326, 961, 2842, 8425, 25020, 74403, 221488, 659895, 1967422, 5869055, 17516540, 52300729, 156214828, 466736979, 1394894672, 4169810935, 12467680862, 37285474803, 111524444760, 333633526937, 998233861836
Offset: 0

Views

Author

Keywords

Comments

The terms a(0)..a(25) obey a linear recurrence with polynomial coefficients of degree 7. - Ralf Stephan, May 31 2014

Examples

			G.f. = 1 + 4*x + 13*x^2 + 38*x^3 + 111*x^4 + 326*x^5 + 961*x^6 + 2842*x^7 + ...
		

Crossrefs

Cf. A027052.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>2*n then 0
        elif k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add((k+1)*T(n,2*n-k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[(k+1)*T[n,2*n-k], {k, 0, 2*n}], {n, 0, 30}] (* G. C. Greubel, Nov 06 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum((k+1)*T(n,2*n-k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019

Formula

0 = a(n)*(9*n + 9) + a(n+1)*(3*n + 21) + a(n+2)*(13*n - 5) + a(n+3)*(-29*n + 11) + a(n+4)*(-13*n - 121) + a(n+5)*(25*n + 123) + a(n+6)*(-98n - 43) + a(n+7)*(n + 5) for n>=-1. - Michael Somos, May 31 2014
0 = a(n)*(+81*a(n+1) + 189*a(n+2) + ... + 45*a(n+8)) + a(n+1)*(-135*a(n+1) + ...) + ... + a(n+7)*(-7*a(n+7) + a(n+8)) for n>=-1. - Michael Somos, May 31 2014