A027170 Triangular array T read by rows (4-diamondization of Pascal's triangle). Step 1: t(n,k) = C(n+2,k+1) + C(n+1,k) + C(n+1,k+1) + C(n,k). Step 2: T(n,k) = t(n,k) - t(0,0) + 1. Domain: 0 <= k <= n, n >= 0.
1, 3, 3, 5, 10, 5, 7, 19, 19, 7, 9, 30, 42, 30, 9, 11, 43, 76, 76, 43, 11, 13, 58, 123, 156, 123, 58, 13, 15, 75, 185, 283, 283, 185, 75, 15, 17, 94, 264, 472, 570, 472, 264, 94, 17, 19, 115, 362, 740, 1046, 1046, 740, 362, 115, 19, 21, 138, 481, 1106, 1790, 2096, 1790, 1106, 481, 138, 21
Offset: 0
Examples
Triangle starts: 1; 3, 3; 5, 10, 5; 7, 19, 19, 7; 9, 30, 42, 30, 9; 11, 43, 76, 76, 43, 11; ...
Links
- Indranil Ghosh, Rows of n = 0..125 of triangle, flattened
Programs
-
Mathematica
t[n_, k_]:= Binomial[n + 2, k + 1] + Binomial[n + 1, k] + Binomial[n + 1, k + 1] + Binomial[n ,k]; T[n_, k_] := t[n, k] - t[0, 0] + 1; Flatten[Table[T[n, k], {n, 0, 10},{k, 0, n}]] (* Indranil Ghosh, Mar 13 2017 *)
-
PARI
alias(C, binomial); t(n,k) = C(n+2,k+1)+C(n+1,k)+C(n+1,k+1)+C(n,k); T(n,k) = t(n,k)-t(0,0)+1; tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Mar 13 2017