cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027188 a(n) = number of partitions of n into an odd number of parts, the least being 2; also a(n+2) = number of partitions of n into an even number of parts, each >=2.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 12, 17, 20, 28, 33, 44, 52, 69, 82, 105, 126, 161, 191, 239, 286, 355, 423, 520, 618, 755, 896, 1084, 1285, 1549, 1829, 2190, 2583, 3079, 3621, 4297, 5041, 5960, 6977, 8214, 9595, 11264, 13123, 15353, 17854, 20828
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0,
           b(n, i-1, t) +`if`(i>n, 0, b(n-i, i, 1-t))))
        end:
    a:= n-> b(n-2$2, 1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 27 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<2, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, 1-t]]]]; a[n_] := b[n-2, n-2, 1]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
  • PARI
    gf=sum(n=0, N,  q^(2*n+1)/prod(k=1,n, 1-q^(2*k)) * q^(2*n+1)/prod(k=1,n, 1-q^(2*k-1)) );
    concat([0], Vec(gf) ) \\ Joerg Arndt, Feb 27 2014

Formula

G.f.: sum(n>=0, q^(2*n+1)/prod(k=1..n, 1-q^(2*k)) * q^(2*n+1)/prod(k=1..n, 1-q^(2*k-1)) ). [Joerg Arndt, Feb 27 2014]
a(n+2) + A027194(n+2) = A002865(n). - R. J. Mathar, Jun 16 2018
G.f.: x^2 * Sum_{k>=0} x^(4*k)/Product_{j=1..2*k} (1-x^j). - Seiichi Manyama, May 15 2023
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3*2^(7/2)*n^(3/2)). - Vaclav Kotesovec, Jun 20 2025