cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A027189 Number of partitions of n into an odd number of parts, the least being 3; also, a(n+3) = number of partitions of n into an even number of parts, each >=3.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 11, 12, 17, 19, 25, 29, 37, 43, 56, 64, 80, 94, 116, 135, 167, 194, 236, 276, 332, 387, 466, 541, 645, 752, 891, 1034, 1223, 1417, 1666, 1931, 2260, 2613, 3054, 3522, 4098, 4725, 5480
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A027195.

Formula

a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (8 * 3^(3/2) * n^2). - Vaclav Kotesovec, May 17 2020
G.f.: x^3 * Sum_{k>=0} x^(6*k)/Product_{j=1..2*k} (1-x^j). - Seiichi Manyama, May 15 2023

A027199 Triangular array T read by rows: T(n,k) = number of partitions of n into an odd number of parts, each >=k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 8, 2, 1, 1, 1, 1, 1, 10, 3, 1, 1, 1, 1, 1, 1, 16, 4, 2, 1, 1, 1, 1, 1, 1, 20, 6, 2, 1, 1, 1, 1, 1, 1, 1, 29, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 66, 17, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   2,  1, 1;
   2,  1, 1, 1;
   4,  1, 1, 1, 1;
   5,  2, 1, 1, 1, 1;
   8,  2, 1, 1, 1, 1, 1;
  10,  3, 1, 1, 1, 1, 1, 1;
  16,  4, 2, 1, 1, 1, 1, 1, 1;
  20,  6, 2, 1, 1, 1, 1, 1, 1, 1;
  29,  7, 3, 1, 1, 1, 1, 1, 1, 1, 1;
  37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • PARI
    T(n, k) = polcoef(x^k*sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i+1, 1-x^j+x*O(x^n))), n); \\ Seiichi Manyama, May 15 2023

Formula

T(n, k) = Sum{O(n, i)}, k<=i<=n, O given by A027185.
T(n,k) + A027200(n,k) = A026807(n,k). - R. J. Mathar, Oct 18 2019
G.f. of column k: x^k * Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i+1} (1-x^j). - Seiichi Manyama, May 15 2023

Extensions

More terms from Seiichi Manyama, May 15 2023
Showing 1-2 of 2 results.