cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027196 Number of partitions of n into an even number of parts, the least being 4; also, a(n+4) = number of partitions of n into an odd number of parts, each >=4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 25, 29, 35, 41, 50, 58, 70, 81, 97, 113, 134, 156, 185, 214, 252, 292, 343, 396, 463, 534, 623, 718, 833, 958, 1110, 1274, 1471, 1686, 1943, 2223, 2555, 2919, 3347, 3818, 4368
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
         `if`(i>n, 0, b(n, i+1, t)+b(n-i, i, 1-t)))
        end:
    a:= n-> `if`(n<4, 0, b(n-4, 4, 0)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 18 2019
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t, If[i > n, 0, b[n, i + 1, t] + b[n - i, i, 1 - t]]];
    a[n_] := If[n < 4, 0, b[n - 4, 4, 0]];
    Array[a, 100] (* Jean-François Alcover, May 17 2020, after Alois P. Heinz *)

Formula

a(n) + A027190(n) = A026797(n). - R. J. Mathar, Oct 18 2019
G.f.: x^8 * Sum_{k>=0} x^(8*k)/Product_{j=1..2*k+1} (1-x^j). - Seiichi Manyama, May 15 2023