A027199 Triangular array T read by rows: T(n,k) = number of partitions of n into an odd number of parts, each >=k.
1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 8, 2, 1, 1, 1, 1, 1, 10, 3, 1, 1, 1, 1, 1, 1, 16, 4, 2, 1, 1, 1, 1, 1, 1, 20, 6, 2, 1, 1, 1, 1, 1, 1, 1, 29, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 66, 17, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 2, 1, 1, 1; 4, 1, 1, 1, 1; 5, 2, 1, 1, 1, 1; 8, 2, 1, 1, 1, 1, 1; 10, 3, 1, 1, 1, 1, 1, 1; 16, 4, 2, 1, 1, 1, 1, 1, 1; 20, 6, 2, 1, 1, 1, 1, 1, 1, 1; 29, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1; 37, 10, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1; 52, 12, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
Programs
-
PARI
T(n, k) = polcoef(x^k*sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i+1, 1-x^j+x*O(x^n))), n); \\ Seiichi Manyama, May 15 2023
Formula
T(n, k) = Sum{O(n, i)}, k<=i<=n, O given by A027185.
G.f. of column k: x^k * Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i+1} (1-x^j). - Seiichi Manyama, May 15 2023
Extensions
More terms from Seiichi Manyama, May 15 2023