cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027216 a(n) = Sum_{k=0..n-1} T(n,k)*T(n,k+1), T given by A026736.

Original entry on oeis.org

1, 4, 15, 63, 237, 1034, 3945, 17577, 67640, 304902, 1179415, 5352038, 20771331, 94628132, 368083879, 1680820301, 6548692260, 29946087674, 116816782997, 534628747310
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([1..20], n-> Sum([0..n-1], k-> T(n, k)*T(n,k+1) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+1], {k, 0, n-1}], {n, 1, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, sum(k=0, n-1, T(n, k)*T(n,k+1)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k)*T(n,k+1) for k in (0..n-1)) for n in (1..30)] # G. C. Greubel, Jul 19 2019
    

Formula

a(n) ~ (1/2 - (-1)^n/10) * phi^(3*n - 5/2 + (-1)^n/2), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019